Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2059798318002267 | DOI Listing |
J Plant Physiol
November 2024
Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada. Electronic address:
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg controlling the ratios of Mg-free and Mg-complexed reactants.
View Article and Find Full Text PDFMicrob Pathog
December 2024
State University of Ceará, Northeast Network of Biotechnology Program (RENORBIO), Campus Itaperi, Fortaleza, Brazil; Course of Chemistry, State University of Vale Acaraú, Sobral, Ceará, Brazil; Postgraduate in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil. Electronic address:
The study investigates the synthesis, characterization, and antibacterial activity of an ibuprofen-derived hydrazide (HIDZ). It was synthesized and characterized using NMR spectroscopy, DFT Calculations, and ADMET studies. Furthermore, HIDZ cytotoxicity on L929 cells was evaluated using the MTT reduction assay.
View Article and Find Full Text PDFBiology (Basel)
October 2024
Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
The thymidylate kinase () gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the genes of phytoplasma ziziphi, in this study, the genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, and , were identified using clone-based sequencing.
View Article and Find Full Text PDFMol Plant Pathol
November 2024
Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China.
Heliyon
November 2024
Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
Desert plants possess untapped potential for medicinal applications due to their rich phytochemical profiles. However, they need to be more explored. Thus, this study integrates advanced analytical, biochemical, and molecular techniques to investigate the phytochemical composition and biological activities (antimicrobial and antioxidant) of four desert plants (, and , collected from Wadi Sannor, Beni-Suef Governorate, Egypt, in March 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!