Phytoplasmas are wall-less phytopathogenic bacteria that produce devastating effects in a wide variety of plants. Reductive evolution has shaped their genome, with the loss of many genes, limiting their metabolic capacities. Owing to the high concentration of C compounds in plants, and the presence of malic enzyme (ME) in all phytoplasma genomes so far sequenced, the oxidative decarboxylation of L-malate might represent an adaptation to generate energy. Aster yellows witches'-broom (Candidatus Phytoplasma) ME (AYWB-ME) is one of the smallest of all characterized MEs, yet retains full enzymatic activity. Here, the crystal structure of AYWB-ME is reported, revealing a unique fold that differs from those of `canonical' MEs. AYWB-ME is organized as a dimeric species formed by intertwining of the N-terminal domains of the protomers. As a consequence of such structural differences, key catalytic residues such as Tyr36 are positioned in the active site of each protomer but are provided by the other protomer of the dimer. A Tyr36Ala mutation abolishes the catalytic activity, indicating the key importance of this residue in the catalytic process but not in the dimeric assembly. Phylogenetic analyses suggest that larger MEs (large-subunit or chimeric MEs) might have evolved from this type of smaller scaffold by gaining small sequence cassettes or an entire functional domain. The Candidatus Phytoplasma AYWB-ME structure showcases a novel minimal structure design comprising a fully functional active site, making this enzyme an attractive starting point for rational genetic design.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2059798318002759DOI Listing

Publication Analysis

Top Keywords

malic enzyme
12
candidatus phytoplasma
12
crystal structure
8
phytoplasma aywb-me
8
active site
8
structure malic
4
enzyme
4
enzyme candidatus
4
phytoplasma
4
phytoplasma reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!