Objective: One-third of cases of focal epilepsy are drug refractory, and surgery might provide a cure. Seizure-free outcome after surgery depends on the correct identification and resection of the epileptogenic zone. In patients with no visible abnormality on MRI, or in cases in which presurgical evaluation yields discordant data, invasive stereoelectroencephalography (SEEG) recordings might be necessary. SEEG is a procedure in which multiple electrodes are placed stereotactically in key targets within the brain to record interictal and ictal electrophysiological activity. Correlating this activity with seizure semiology enables identification of the seizure-onset zone and key structures within the ictal network. The main risk related to electrode placement is hemorrhage, which occurs in 1% of patients who undergo the procedure. Planning safe electrode placement for SEEG requires meticulous adherence to the following: 1) maximize the distance from cerebral vasculature, 2) avoid crossing sulcal pial boundaries (sulci), 3) maximize gray matter sampling, 4) minimize electrode length, 5) drill at an angle orthogonal to the skull, and 6) avoid critical neurological structures. The authors provide a validation of surgical strategizing and planning with EpiNav, a multimodal platform that enables automated computer-assisted planning (CAP) for electrode placement with user-defined regions of interest.

Methods: Thirteen consecutive patients who underwent implantation of a total 116 electrodes over a 15-month period were studied retrospectively. Models of the cortex, gray matter, and sulci were generated from patient-specific whole-brain parcellation, and vascular segmentation was performed on the basis of preoperative MR venography. Then, the multidisciplinary implantation strategy and precise trajectory planning were reconstructed using CAP and compared with the implemented manually determined plans. Paired results for safety metric comparisons were available for 104 electrodes. External validity of the suitability and safety of electrode entry points, trajectories, and target-point feasibility was sought from 5 independent, blinded experts from outside institutions.

Results: CAP-generated electrode trajectories resulted in a statistically significant improvement in electrode length, drilling angle, gray matter-sampling ratio, minimum distance from segmented vasculature, and risk (p < 0.05). The blinded external raters had various opinions of trajectory feasibility that were not statistically significant, and they considered a mean of 69.4% of manually determined trajectories and 62.2% of CAP-generated trajectories feasible; 19.4% of the CAP-generated electrode-placement plans were deemed feasible when the manually determined plans were not, whereas 26.5% of the manually determined electrode-placement plans were rated feasible when CAP-determined plans were not (no significant difference).

Conclusions: CAP generates clinically feasible electrode-placement plans and results in statistically improved safety metrics. CAP is a useful tool for automating the placement of electrodes for SEEG; however, it requires the operating surgeon to review the results before implantation, because only 62% of electrode-placement plans were rated feasible, compared with 69% of the manually determined placement plans, mainly because of proximity of the electrodes to unsegmented vasculature. Improved vascular segmentation and sulcal modeling could lead to further improvements in the feasibility of CAP-generated trajectories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076995PMC
http://dx.doi.org/10.3171/2017.10.JNS171826DOI Listing

Publication Analysis

Top Keywords

manually determined
20
electrode-placement plans
16
electrode placement
12
computer-assisted planning
8
focal epilepsy
8
seeg requires
8
gray matter
8
electrode length
8
vascular segmentation
8
plans
8

Similar Publications

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.

View Article and Find Full Text PDF

Background: To ensure the complete traceability of healthcare commodities, robust end-to-end data management protocols are needed for the supply chain. In Ethiopia, digital tools like Dagu-2 are used in the lower levels of the healthcare supply chain. However, there is a lack of information regarding the implementation status, factors, and challenges of Dagu-2, as it is a recent upgrade from the offline Dagu-1 application.

View Article and Find Full Text PDF

Exploring the potential of machine learning models to predict nasal measurements through facial landmarks.

J Prosthet Dent

January 2025

Professor and Chairman, Department of Prosthodontics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:

Statement Of Problem: Information on predicting the measurements of the nose from selected facial landmarks to assist in maxillofacial prosthodontics is lacking.

Purpose: The objective of this study was to identify the efficiency of machine learning models in predicting the length and width of the nose from selected facial landmarks.

Material And Methods: Two-dimensional frontal and lateral photographs were made of 100 men and 100 women.

View Article and Find Full Text PDF

Individual Rumination in Adult Cancer Care: A Concept Analysis.

Semin Oncol Nurs

January 2025

School of Nursing, Midwifery and Health Systems, University College Dublin (UCD), Dublin, Ireland.

Objective: To conceptualize rumination in adult cancer care.

Methods: Walker and Avant's concept analysis method was used to examine rumination in adults with cancer. A systematic search was conducted across psychology, nursing, medicine, and public health disciplines in PsycINFO, PubMed, Web of Science, CINAHL, and Scopus databases from their inception to April 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!