Tumor-associated macrophages are highly versatile effector cells that have been used to kill tumor cells. Herein, the macrophages as cell-based biocarriers are used for the targeted delivery of photothermal reagents for promoting the efficiency of killing tumor cells by activating the anti-tumor immune response and photothermal therapy (PTT). In this design, macrophages cause the phagocytosis of tumor cells and activate the anti-tumor immune response by secreting plenty of cytokines. Meanwhile, to improve the tumor-killing effect and track the collaborative therapy system in vivo, a novel nanoplatform based on tungsten oxide (W18O49, WO) nanoparticles and fluorescent dyes loaded in polylactic-co-glycolic acid (PLGA) for PTT has been successfully constructed. Subsequently, the nanoparticles are swallowed by macrophages acting as cell-based biocarriers to target the tumor and promote solid tumor ablation in vivo in animal experiments. This system is expected to bring a huge application potential in the visually guided dual-modal therapeutic platform for tumor targeting therapy in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm00218eDOI Listing

Publication Analysis

Top Keywords

tumor cells
12
targeted delivery
8
tungsten oxide
8
cell-based biocarriers
8
anti-tumor immune
8
immune response
8
tumor
6
macrophages
5
delivery tungsten
4
oxide nanoparticles
4

Similar Publications

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

The endonuclease activity of MCPIP1 controls the neoplastic transformation of epithelial cells via the c-Met/CD44 axis.

Cell Commun Signal

January 2025

Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Background: Perivascular epithelioid cell tumors (PEComas) rarely appear in the head and neck region. This case report describes two transcription factor E3 (TFE3)-rearranged PEComa cases, consisting of one in the orbit and one in the nasal cavity.

Case Presentation: Both cases demonstrated sheet-like or focal nested architecture and comprised epithelioid cells with abundant clear to eosinophilic cytoplasm and vascular stroma.

View Article and Find Full Text PDF

Background: Programmed cell death ligand 1 (PD-L1) expression on immune cells is correlated with the efficacy of immune checkpoint inhibitor (ICI) therapy in various types of cancer. Platelets are important components of the tumour microenvironment (TME) and are widely involved in the development of many types of cancer including colorectal cancer (CRC). However, the role of PD-L1 positive platelets in ICI therapy for CRC remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!