Silk fibroin-based woven endovascular prosthesis with heparin surface modification.

J Mater Sci Mater Med

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 215123, Suzhou, China.

Published: April 2018

A novel seamless silk fibroin-based endovascular prosthesis (SFEPs) with bifurcated woven structure and anticoagulant function for the improvement of patency is described. The SFEPs were prepared from silk fibroin (SF) and polyester filaments using an installed weaving machine. The production processing parameters were optimized using orthogonal design methods. The inner surface of SFEPs was modified with polyethylenimine (PEI) and EDC/NHS-activated low-molecular-weight heparin (LMWH) to enhance anticoagulant function. The surface morphology and mechanical properties of the SFEPs were evaluated according to standard protocols. The thickness of modified SFEPs was lower than 0.085 ± 0.004 mm and water permeability was lower than 5.19 ± 0.30 mL/(cm × min). The results of mechanical properties showed that the diametral tensile strength and burst strength reached 61.6 ± 1.8 and 23.7 ± 2.2 MPa, respectively. Automatic coagulometer and energy-dispersive X-ray (EDX) confirmed LMWH immobilization on the surface of the SFEPs and the blood compatibility was improved with the heparin modification with PEI polymerization. In conclusion, the new prosthesis has potential applications in the blood vessel repairs where minimal thickness but superior mechanical strength and biocompatibility are important.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-018-6055-3DOI Listing

Publication Analysis

Top Keywords

silk fibroin-based
8
endovascular prosthesis
8
anticoagulant function
8
surface sfeps
8
mechanical properties
8
sfeps
6
fibroin-based woven
4
woven endovascular
4
prosthesis heparin
4
surface
4

Similar Publications

Article Synopsis
  • Osteoarthritis (OA) is a prevalent joint disorder that leads to cartilage breakdown, causing significant pain and potential deformities, with current treatment options showing limitations.
  • Cartilage organoids, which mimic natural cartilage structures, can help advance OA research and serve as effective fillers for cartilage repair due to their three-dimensional properties and structure.
  • Silk fibroin (SF)-based hydrogels are highlighted as ideal materials for creating these organoids, providing excellent mechanical properties and biocompatibility, and their development is enhanced through artificial intelligence for optimized treatment solutions.
View Article and Find Full Text PDF

The repair of diabetic bone defects is still filled with enormous challenges. Excessive reactive oxygen species (ROS) are regenerated in diabetic bone defect sites which is harmful to bone regeneration. Therefore, it's to a good strategy to scavenge the excess ROS to provide a friendly environment for diabetic bone defects repair.

View Article and Find Full Text PDF

An ATP-activated spatiotemporally controlled hydrogel prodrug system for treating multidrug-resistant bacteria-infected pressure ulcers.

Bioact Mater

March 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.

Adenosine triphosphate (ATP)-activated prodrug approaches demonstrate potential in antibacterial uses. However, their efficacy frequently faces obstacles due to uncontrolled premature activation and spatiotemporal distribution differences under physiological circumstances. Herein, we present an endogenous ATP-activated prodrug system (termed ISD3) consisting of nanoparticles (indole-3-acetic acid/zeolitic imidazolate framework-8@polydopamine@platinum, IZPP) embedded in a silk fibroin-based hydrogel, aimed at treating multidrug-resistant (MDR) bacteria-infected pressure ulcers.

View Article and Find Full Text PDF

The ability of fungi and bacteria to form biofilms on surfaces poses a serious threat to health and a problem in industrial settings. In this work, we investigated how the surface stiffness of silk fibroin (SF) films is modulated by the interaction with black phosphorus (BP) flakes, quantifying the morphogenesis of cells. Raman and infrared (IR) spectroscopies, along with scanning transmission electron microscopy, allowed us to quantify the thickness and diameter of BP flakes dispersed in the SF matrix (, 5.

View Article and Find Full Text PDF

An Efficient Biosynthetic System for Developing Functional Silk Fibroin-Based Biomaterials.

Adv Mater

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Long historical evolution and domestication endow silkworms with the super ability to synthesize and secrete massive silk proteins using silk glands. The major component of this secretion consists of silk fibroin, considered a promising biomaterial for tissue repairs and engineering. To further expand the utility of this unique protein, there is a continuing need for silk fibroin functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!