Historical Records and Source Apportionment of Polycyclic Aromatic Hydrocarbons Over the Past 100 Years in Dianchi Lake, a Plateau Lake in Southwest China.

Arch Environ Contam Toxicol

State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China.

Published: August 2018

Two sediment cores were collected from Dianchi Lake, a plateau lake in Southwest China, to study the temporal trends and to investigate the sources of sedimentary deposited polycyclic aromatic hydrocarbon. The ΣPAH16 concentration in the two sediment cores ranged from 172.5 to 2244.8 ng/g and from 211.4 to 1777.8 ng/g, with mean values of 1106.2 and 865.1 ng/g, respectively. Three temporal trends for the ΣPAH16 concentration and the composition of PAHs in Dianchi Lake all showed three typical changing stages: (1) slight changes in deeper segments before the 1950s; (2) a rapid increase in PAH concentrations between the 1960s and 1990s; and (3) a slight reduction from the 1990s onward. These trends differ from those observed in developed countries due to differences in the timing of industrialization and urbanization processes. According to the results of the molecular ratios and principal component analysis, the PAH deposition was dominated by coal combustion, wood combustion, and vehicle emissions before and after the 1960s, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-018-0525-yDOI Listing

Publication Analysis

Top Keywords

dianchi lake
12
polycyclic aromatic
8
lake plateau
8
plateau lake
8
lake southwest
8
southwest china
8
sediment cores
8
temporal trends
8
Σpah16 concentration
8
lake
5

Similar Publications

Drivers analysis and future scenario-based predictions of nutrient loads in key lakes and reservoirs of the Yangtze River Catchment.

J Environ Manage

January 2025

State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

The excessive nutrient loading in lakes and reservoirs poses significant threats to water quality and ecological health, especially under the influence of global climate change and intensified human activities. This study focuses on the long-term trends in nutrient content and ratios, as well as their driving factors in six major lakes and reservoirs (Chaohu Lake, Danjiangkou Reservoir, Dianchi Lake, Dongtinghu Lake, Poyanghu Lake, and Taihu Lake) within the Yangtze River Catchment from 2002 to 2021. Utilizing Redundancy Analysis, Random Forest and Generalized Additive Model, we identify the shifts in natural and socio-economic factors influencing nutrient concentrations and predict future trends under various scenarios.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have been detected in lake ecosystems globally, even in remote areas at high altitudes. Compared to plain lakes with short water change cycles and significant human influence, plateau lakes are primarily tectonic closed or semi-closed lakes with steep terrain. Their long water change cycles lead to an obvious cumulative effect on pollutants.

View Article and Find Full Text PDF

Vertical distribution characteristics of microplastics and bacterial communities in the sediment columns of Jianhu lake in China.

Environ Geochem Health

December 2024

Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China.

Microorganisms change the properties of microplastics, at the same time, microplastics can also affect the distribution of microorganisms. To investigate this issue, we chose to study Jianhu Lake, a plateau lake in southwestern China, by collecting data at three sampling locations. The microplastics and bacterial communities in the sediment columns of Jianhu Lake were sampled within a 0 to 60 cm profile, and the basic characteristics of microplastic abundance, shape, color, size, and polymer type were determined accordingly, via their collection, separation, extraction, and identification.

View Article and Find Full Text PDF

Variable cyanobacterial death modes caused by ciprofloxacin in the aquatic environment: Prioritizing antibiotic-photosynthetic protein interactions for risk assessment.

Water Res

March 2025

Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China. Electronic address:

Article Synopsis
  • * At lower concentrations (3 μg/L), CIP primarily targets the PSII D1 protein, which leads to cell death through apoptosis-like mechanisms, while at higher concentrations (8 μg/L), it additionally affects PSI proteins, causing a switch to a different cell death pathway.
  • * The study reveals how different antibiotic levels can change their lethal effects on photosynthetic organisms, highlighting the need for better risk assessment practices regarding the impact of antibiotics in aquatic environments.
View Article and Find Full Text PDF

Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China.

Sci Total Environ

December 2024

State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China. Electronic address:

Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!