The potential of three indigenous bacterial strains ( N2, TM1, and G88) for the production of biosurfactants using sugar cane molasses or glycerol as substrates was investigated through emulsifying, surface tension, and antimicrobial activities. The different biosurfactants produced with molasses as substrate exhibited high surface tension reduction from 72 mN/m to values ranged from 47.50 ± 1.78 to 41.90 ± 0.79 mN/m and high emulsification index ranging from 49.89 ± 5.28 to 81.00 ± 1.14%. Whatever the strain or the substrate used, the biosurfactants produced showed antimicrobial activities against LV1, some pathogenic and/or spoilage Gram-positive and Gram-negative bacteria. The yields of biosurfactants with molasses (2.43 ± 0.09 to 3.03 ± 0.09 g/L) or glycerol (2.32 ± 0.19 to 2.82 ± 0.05 g/L) were significantly ( < 0.05) high compared to those obtained with MRS broth as substrate (0.30 ± 0.02 to 0.51 ± 0.09 g/L). Preliminary characterization of crude biosurfactants reveals that they are mainly glycoproteins and glycolipids with molasses and glycerol as substrate, respectively. Therefore, sugar cane molasses or glycerol can effectively be used by strains as low-cost substrates to increase their biosurfactants production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832067 | PMC |
http://dx.doi.org/10.1155/2018/5034783 | DOI Listing |
Sci Rep
November 2024
College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
Sugarcane molasses is an ideal economical raw material for ethanol production because of its wide availability, low cost and nutrient content. However, benzoic acid compounds with toxic effects on yeast cells are commonly found in sugarcane molasses. At present, the molecular mechanism of the toxic effects of benzoic acid on Saccharomyces cerevisiae has not been elucidated.
View Article and Find Full Text PDFBioresour Technol
February 2025
Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
Crude sugarcane molasses (SCM) was successfully applied for the first time as a bio-feedstock for producing biochar catalysts for glycerol upgrading. Preparation methods were developed, including partial or hydrothermal carbonization (abbr. PC and HTC) and chemical activation.
View Article and Find Full Text PDFFEMS Yeast Res
January 2024
Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol.
View Article and Find Full Text PDFMicroorganisms
June 2024
Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil.
This study demonstrates that can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 () was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.
View Article and Find Full Text PDFGenomics
March 2024
Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!