In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to FeO and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889761PMC
http://dx.doi.org/10.1007/s13205-018-1228-9DOI Listing

Publication Analysis

Top Keywords

citric acid-coated
20
acid-coated mnps
16
magnetic nanoparticles
12
ester synthesis
12
ester formation
12
ester
9
mnps
9
lipase-conjugated citric
8
synthesis waste
8
waste frying
8

Similar Publications

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Iron oxide nanoparticles improving multimetal phytoextraction in Helianthus annuus.

Chemosphere

April 2024

Univ Rennes, CNRS, ECOBIO, UMR 6553, Av. General Leclerc, F-35042, Rennes Cedex, France. Electronic address:

This study assessed the phytotoxicity of a mixture of five different trace elements (TEs) frequently found as pollutants in soils: arsenic, cadmium, copper, lead and zinc. On the other hand, the plant response to a magnetite (FeO) nanoparticle amendment on this mixture as well as nanomagnetite remediation potential has been tested. Sunflower (Helianthus annuus) plants were grown for 90 days in soil contaminated with the five mentioned TEs at the limit levels of TEs in soils likely to receive sludge established by French legislation.

View Article and Find Full Text PDF

A "turn off-on" fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin.

Spectrochim Acta A Mol Biomol Spectrosc

April 2024

Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China. Electronic address:

Hexavalent chromium (Cr(Ⅵ)) is a significant environmental pollutant because of its toxic and carcinogenic properties and wide use in various industries. Hence, there is an urgent need to develop accurate and selective approaches to detect the concentration of Cr(Ⅵ) in agricultural and aquaculture products to help humans avoid potential hazards of indirectly taking in Cr(Ⅵ). In this work, we report a "turn off-on" fluorescent sensor based on citric acid coated, 808 nm-excited core-shell upconversion nanoparticles (CA-UCNPs) and self-assembled copper porphyrin nanoparticles (nano CuTPyP) for sensitive and specific detection of Cr(Ⅵ).

View Article and Find Full Text PDF

Thermosensitive cationic magnetic liposomes (TCMLs), prepared from dipalmitoylphosphatidylcholine (DPPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]-2000, and didodecyldimethylammonium bromide (DDAB) were used in this study for the controlled release of drug/gene for cancer treatment. After co-entrapping citric-acid-coated magnetic nanoparticles (MNPs) and the chemotherapeutic drug irinotecan (CPT-11) in the core of TCML (TCML@CPT-11), SLP2 shRNA plasmids were complexed with DDAB in the lipid bilayer to prepare TCML@CPT-11/shRNA with a 135.6 ± 2.

View Article and Find Full Text PDF

: Based on stem cells, bioactive molecules and supportive structures, regenerative medicine (RM) is promising for its potential impact on field of hearing loss by offering innovative solutions for hair cell rescue. Nanotechnology has recently been regarded as a powerful tool for accelerating the efficiency of RM therapeutic solutions. Adipose-derived mesenchymal cells (ADSCs) have already been tested in clinical trials for their regenerative and immunomodulatory potential in various medical fields; however, the advancement to bedside treatment has proven to be tedious.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!