Carbamazepine (CBZ) is an anti-epileptic and anti-convulsant drug widely used for the treatment of epilepsy and other bipolar disorders. Ozone as an advanced oxidation process has been widely used for the degradation of CBZ resulting in the formation of transformation products (ozonides). The present research aims to isolate and identify potential microorganism, capable of degradation of CBZ and its transformation products. The cell viability and cytotoxicity of pure CBZ and their ozone transformation products were evaluated using the cells of sp. strain KSH-1 through cell viability assay tests. The cells metabolic activity was assessed at varying CBZ concentrations (~ 10-25 ppm, pure CBZ) and cumulatively for ozone transformation products. For pure CBZ, % cell viability decreases as CBZ concentration increases, while, in case of post-ozonated CBZ transformation products, the viability decreases initially and then increases upon exposure of ozone with a maximum cell viability of 97 ± 2.8% evaluated for 2 h post-ozonated samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891479PMC
http://dx.doi.org/10.1007/s12088-018-0715-3DOI Listing

Publication Analysis

Top Keywords

transformation products
24
cell viability
16
pure cbz
12
cbz
10
carbamazepine cbz
8
strain ksh-1
8
degradation cbz
8
cbz transformation
8
ozone transformation
8
viability decreases
8

Similar Publications

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

Common pancreatobiliary epithelial malignancies such as pancreatic ductal adenocarcinoma, cholangiocarcinoma and gallbladder carcinoma have poor prognosis. A small but significant portion of these malignancies arise from mass-forming grossly and radiologically visible premalignant epithelial neoplasms in the pancreatobiliary tree. Several lesions, including a few recently described entities, fall under this category and predominantly include papillary epithelial lesions with or without mucin production.

View Article and Find Full Text PDF

Enhancing CO Oversaturation in the Confined Water Enables Superior Gas Selectivity of 2D Membranes.

J Phys Chem Lett

January 2025

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!