Genome editing provides a potential approach to model de novo leukemogenesis in primary human hematopoietic stem and progenitor cells (HSPCs) through induction of chromosomal translocations by targeted DNA double-strand breaks. However, very low efficiency of translocations and lack of markers for translocated cells serve as barriers to their characterization and model development. Here, we used transcription activator-like effector nucleases to generate t(9;11) chromosomal translocations encoding and reciprocal fusion products in CD34 human cord blood cells. Selected cytokine combinations enabled monoclonal outgrowth and immortalization of initially rare translocated cells, which were distinguished by elevated target gene expression, high surface CD9 expression, and increased colony-forming ability. Subsequent transplantation into immune-compromised mice induced myeloid leukemias within 48 weeks, whose pathologic and molecular features extensively overlap with de novo patient -rearranged leukemias. No secondary pathogenic mutations were revealed by targeted exome sequencing and whole genome RNA-sequencing analyses, suggesting the genetic sufficiency of t(9;11) translocation for leukemia development from human HSPCs. Thus, genome editing enables modeling of human acute rearranged leukemia in vivo, reflecting the genetic simplicity of this disease, and provides an experimental platform for biological and disease-modeling applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916000 | PMC |
http://dx.doi.org/10.1182/bloodadvances.2017013748 | DOI Listing |
Anat Sci Int
January 2025
Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA.
Cartilage injuries are extremely common in the general population, and conventional interventions have failed to produce optimal results. Tissue engineering (TE) technology has been developed to produce neocartilage for use in a variety of cartilage-related conditions. However, progress in the field of cartilage TE has historically been difficult due to the high functional demand and avascular nature of the tissue.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
Introduction: Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau () gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models.
Methods: To investigate the effects of gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs).
Plant Dis
January 2025
State Fruit Experiment Station, Missouri State University, Mountain Grove, Missouri, United States;
Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!