Background: Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC.
Methods: We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project.
Results: MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients.
Conclusions: Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2018.03.028 | DOI Listing |
Hum Mol Genet
January 2025
Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America.
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China.
Objective: The impact of lipid-lowering medications on chronic kidney disease (CKD) remains a subject of debate. This Mendelian randomization (MR) study aims to elucidate the potential effects of lipid-lowering drug targets on CKD development.
Methods: We extracted 11 genetic variants encoding targets of lipid-lowering drugs from published genome-wide association study (GWAS) summary statistics, encompassing LDLR, HMGCR, PCSK9, NPC1L1, APOB, ABCG5/ABCG8, LPL, APOC3, ANGPTL3, and PPARA.
JOR Spine
March 2025
SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) Santiago University Clinical Hospital Santiago de Compostela Spain.
Background: Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
School of Medicine, Hangzhou City University, Hangzhou 310015, China.
Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!