Background: Acute lung injury (ALI) is a type of severe pulmonary inflammatory disease with high rates of morbidity and mortality. Now, an increasing number of studies suggest that lncRNAs may act as key regulators of the inflammatory response and play a crucial role in the pathogenesis of many inflammatory diseases. Our study firstly explored the function and underlying mechanism of lncRNA metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) in regulating the inflammatory response of lipopolysaccharide (LPS)-induced ALI in rats.

Methods: The ALI rats were constructed by intratracheal instillation with LPS. Hematoxylin and eosin (HE) for histological examination were performed to detect histopathological changes in the lung tissues. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentrations of cytokines TNF-α, IL-6, and IL-1β in the supernatants of the bronchoalveolar lavage fluid (BALF). Quantitative real-time PCR (qRT-PCR) analysis was employed to assess the expression of MALAT1, miR-146a, TNF-α, IL-6, and IL-1β in lung tissues. Luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to detect the relationship between MALAT1 and miR-146a.

Results: The results revealed that MALAT1 knockdown played a protective role in the LPS-induced ALI rat model. In addition, knockdown of MALAT1 in vitro inhibited LPS-induced inflammatory response in murine alveolar macrophages cell line MH-S and murine alveolar epithelial cell line MLE-12. This study found that MALAT1 acts as a molecular sponge for miR-146a and MALAT1 negatively regulated miR-146a expression. Mechanistically, MALAT1 overexpression alleviated the inhibitory effect of miR-146a on LPS-induced inflammatory response in MH-S.

Conclusions: Together, our study provided the first evidence that MALAT1 knockdown could suppress inflammatory response by up-regulating miR-146a in LPS-induced ALI, which provided a potential therapeutic target for the treatment of ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008207.2018.1439480DOI Listing

Publication Analysis

Top Keywords

inflammatory response
20
mir-146a lps-induced
12
lps-induced ali
12
malat1
10
inflammatory
8
up-regulating mir-146a
8
acute lung
8
lung injury
8
lung tissues
8
tnf-α il-6
8

Similar Publications

Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.

View Article and Find Full Text PDF

Using Transcriptomic Signatures to Elucidate Individual and Mixture Effects of Inorganic Arsenic and Manganese in Human Placental Trophoblast HTR-8/SVneo Cells.

Toxicol Sci

January 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.

Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.

View Article and Find Full Text PDF

The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.

View Article and Find Full Text PDF

It was previously reported that utilization of tetrathionate and 1,2-propanediol by spp. through the metabolic pathways encoded by and operons are related to overgrowth and out-competing microbiota in an anaerobic environment. However, recent knowledge demonstrated which strains in the absence of and genes provoke both higher intestinal colonization and spreading bacteria on faeces in relation to their respective wild-type strain, and generate more prominent inflammation as well.

View Article and Find Full Text PDF

Whether early life acetaminophen (APAP) exposures injure the developing lung is controversial. We sought to correlate murine pulmonary developmental expression profiles of to susceptibility to APAP exposure. P14 C57BL/6 mice were exposed to APAP (140 mg/kg x 1, IP) and assessed for evidence of a histologic, metabolic, functional, and/or transcriptional pulmonary response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!