The anti-fecundity effect of 5-azacytidine (5-AzaC) on Schistosoma mansoni is linked to dis-regulated transcription, translation and stem cell activities.

Int J Parasitol Drugs Drug Resist

Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom. Electronic address:

Published: August 2018

Uncontrolled host immunological reactions directed against tissue-trapped eggs precipitate a potentially lethal, pathological cascade responsible for schistosomiasis. Blocking schistosome egg production, therefore, presents a strategy for simultaneously reducing immunopathology as well as limiting disease transmission in endemic or emerging areas. We recently demonstrated that the ribonucleoside analogue 5-azacytidine (5-AzaC) inhibited Schistosoma mansoni oviposition, egg maturation and ovarian development. While these anti-fecundity effects were associated with a loss of DNA methylation, other molecular processes affected by 5-AzaC were not examined at the time. By comparing the transcriptomes of 5-AzaC-treated females to controls, we provide evidence that this ribonucleoside analogue also modulates other crucial aspects of schistosome egg-laying biology. For example, S. mansoni gene products associated with amino acid-, carbohydrate-, fatty acid-, nucleotide- and tricarboxylic acid (TCA)- homeostasis are all dysregulated in 5-AzaC treated females. To validate the metabolic pathway most significantly affected by 5-AzaC, amino acid metabolism, nascent protein synthesis was subsequently quantified in adult schistosomes. Here, 5-AzaC inhibited this process by 68% ±16.7% (SEM) in male- and 81% ±4.8% (SEM) in female-schistosomes. Furthermore, the transcriptome data indicated that adult female stem cells were also affected by 5-AzaC. For instance, 40% of transcripts associated with proliferating schistosome cells were significantly down-regulated by 5-AzaC. This finding correlated with a considerable reduction (95%) in the number of 5-ethynyl-2'-deoxyuridine (EdU) positive cells found in 5-AzaC-treated females. In addition to protein coding genes, the effect that 5-AzaC had on repetitive element expression was also assessed. Here, 46 repeats were found differentially transcribed between 5-AzaC-treated and control females with long terminal repeat (LTR) and DNA transposon classes being amongst the most significant. This study demonstrates that the anti-fecundity activity of 5-AzaC affects more than just DNA methylation in schistosome parasites. Further characterisation of these processes may reveal novel targets for schistosomiasis control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039303PMC
http://dx.doi.org/10.1016/j.ijpddr.2018.03.006DOI Listing

Publication Analysis

Top Keywords

5-azac
10
5-azacytidine 5-azac
8
schistosoma mansoni
8
ribonucleoside analogue
8
5-azac inhibited
8
dna methylation
8
5-azac-treated females
8
anti-fecundity 5-azacytidine
4
5-azac schistosoma
4
mansoni linked
4

Similar Publications

5-azaC treatment affected anthocyanins, sugars and organic acids and reduced DNA methylation in Merlot grape.

Plant Physiol Biochem

January 2025

College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China; Heyang Viti-viniculture Station, Northwest A & F University, 712100, Yangling, Shaanxi, China. Electronic address:

DNA methylation plays a crucial role in regulating gene expression, thereby affecting the growth and development of organisms. The application of 5-azacytidine (5-azaC) serves as a potent regulator of DNA methylation levels by inhibiting DNA methyltransferase activity, which subsequently impacts organismal growth and development. In this study, we explored the effects of varying concentrations of 5-azaC on the growth and fruit quality attributes of Merlot grapes.

View Article and Find Full Text PDF

1. Valgus-varus deformity (VVD) is a disease that severely affects leg function in broilers and for which there is no effective control method current available. Although DNA methylation has an important impact on most physiological and pathological processes, its involvement in skeletal muscle growth and development in VVD broilers is unknown.

View Article and Find Full Text PDF

DNA Hypomethylation Activates the RpMYB2-Centred Gene Network to Enhance Regeneration of Adventitious Roots.

Plant Cell Environ

February 2025

State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.

Plants, being immobile, are exposed to environmental adversities such as wind, snow and animals that damage their structure, making regeneration essential for their survival. The adventitious roots (ARs) primarily emerge from a detached explant to uptake nutrients; therefore, the molecular network involved in their regeneration needs to be explored. DNA methylation, a key epigenetic mark, influences molecular pathways, and recent studies suggested its role in regeneration.

View Article and Find Full Text PDF

Integrated transcriptomic and proteomic analysis revealed the regulatory role of 5-azacytidine in kenaf salt stress alleviation.

J Proteomics

October 2024

College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China. Electronic address:

Salinity stress limits agricultural production. The DNA methyltransferase inhibitor, 5-azacitidine (5-azaC), plays a role in plant abiotic stress regulation, but its molecular basis in mediating salinity tolerance in kenaf remains unclear. To investigate the effects on 5-azaC on alleviating salt stress, kenaf seedlings were pre-treated with 0, 50, 100, 150, and 200 μM 5-azaC and then exposed to 150 mM NaCl in a nutrient solution.

View Article and Find Full Text PDF

DNA methylation impacts soybean early development by modulating hormones and metabolic pathways.

Physiol Plant

August 2024

Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.

Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!