Unlabelled: Biodegradable injectable hydrogels have been extensively studied and evaluated in various medical applications such as for bulking agents, drug delivery reservoirs, temporary barriers, adhesives, and cell delivery matrices. Where injectable hydrogels are intended to facilitate a healing response, it may be desirable to encourage rapid cellular infiltration into the hydrogel volume from the tissue surrounding the injection site. In this study, we developed a platform technique to rapidly form pores in a thermally responsive injectable hydrogel, poly(NIPAAm-co-VP-co-MAPLA) by using mannitol particles as porogens. In a rat hindlimb muscle injection model, hydrogels incorporating porosity had significantly accelerated cellular infiltration. To influence the inflammatory response to the injected hydrogel, enzymatically digested urinary bladder matrix (UBM) was mixed with the solubilized hydrogel. The presence of UBM was associated with greater polarization of the recruited macrophage population to the M2 phenotype, indicating a more constructive foreign body response. The hybrid hydrogel positively affected the wound healing outcomes of defects in rabbit adipose tissue with negligible inflammation and fibrosis, whereas scar formation and chronic inflammation were observed with autotransplantation and in saline injected groups. These results demonstrate the value of combining the effects of promoting cell infiltration and mediating the foreign body response for improved biomaterials options soft tissue defect filling applications.
Statement Of Significance: Our objective was to develop a fabrication process to create porous injectable hydrogels incorporating decellularized tissue digest material. This new hydrogel material was expected to exhibit faster cellular infiltration and a greater extent of pro-M2 macrophage polarization compared to control groups not incorporating each of the functional components. Poly(NIPAAm-co-VP-co-MAPLA) was chosen as the representative thermoresponsive hydrogel, and mannitol particles and digested urinary bladder matrix (UBM) were selected as the porogen and the bioactive decellularized material components respectively. In rat hindlimb intramuscular injection models, this new hydrogel material induced more rapid cellular infiltration and a greater extent of M2 macrophage polarization compared to control groups not incorporating all of the functional components. The hybrid hydrogel positively affected the wound healing outcomes of defects in rabbit adipose tissue with negligible inflammation and fibrosis, whereas scar formation and chronic inflammation were observed with autotransplantation and in saline injected groups. The methodology of this report provides a straightforward and convenient mechanism to promote cell infiltration and mediate foreign body response in injectable hydrogels for soft tissue applications. We believe that the readership of Acta Biomaterialia will find the work of interest both for its specific results and general translatability of the findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985206 | PMC |
http://dx.doi.org/10.1016/j.actbio.2018.04.003 | DOI Listing |
Polymers (Basel)
December 2024
Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:
Regeneration of the multiple tissues and interfaces in the periodontal complex necessitates multidisciplinary evaluation to establish structure/function relationships. This article, an initiative of the Academy of Dental Materials, provides guidance for performing chemical, structural, and mechanical characterization of materials for periodontal tissue regeneration, and outlines important recommendations on methods of testing bioactivity, biocompatibility, and antimicrobial properties of biomaterials/scaffolds for periodontal tissue engineering. First, we briefly summarize periodontal tissue engineering fabrication methods.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China. Electronic address:
Bacterial infections and inflammation severely impede wound healing. Here, we developed a zwitterionic hydrogel incorporating MOF/GOx for pH-responsive, controlled drug release. The multifunctional hydrogel embedded with MOF/GOx was successfully prepared through the Schiff base reaction between the copolymer poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(4-formylphenyl methacrylate)] (PMF) and the branched polyethylenimine (PEI) modified by the zwitterionic monomer ((4-hydroxyphenyl)sulfonyl)(4-(trimethylammonio)butanoyl)amide (AB), which possessed excellent injectable and self-healing ability, a highly sensitive and reversible responsiveness to pH changes, and good biocompatibility.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:
Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!