Spinal cord injury results in the loss of neurons and axonal connections. In mammals, including humans, this loss is permanent, but is repaired in other vertebrates, such as salamanders and fishes. Cells in the ependymal niche play a pivotal role for the outcome after injury. These cells initiate proliferation and generate new neurons of different types in regenerating species, but only glial cells, contributing to the glial scar, in mammals. Here we compare the cellular and molecular properties of ependymal zone cells and their environment across vertebrate classes. We point out communalities and differences between vertebrates capable of neuronal regeneration and those that are not. Comparisons like these may ultimately lead to the identification of factors that tip the balance for ependymal zone cells in mammals to produce appropriate neural cells for endogenous repair after spinal cord injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2018.04.002 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.
View Article and Find Full Text PDFSci Signal
September 2024
Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA.
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ.
View Article and Find Full Text PDFJ Mol Cell Biol
August 2024
State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation.
View Article and Find Full Text PDFFront Neurosci
July 2024
Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.
Congenital post-infectious hydrocephalus (PIH) is a condition characterized by enlargement of the ventricular system, consequently imposing a burden on the associated stem cell niche, the ventricular-subventricular zone (V-SVZ). To investigate how the V-SVZ adapts in PIH, we developed a mouse model of influenza virus-induced PIH based on direct intracerebroventricular injection of mouse-adapted influenza virus at two distinct time points: embryonic day 16 (E16), when stem cells line the ventricle, and postnatal day 4 (P4), when an ependymal monolayer covers the ventricle surface and stem cells retain only a thin ventricle-contacting process. Global hydrocephalus with associated regions of astrogliosis along the lateral ventricle was found in 82% of the mice infected at P4.
View Article and Find Full Text PDFNeural Regen Res
November 2025
Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!