Induced Systemic Resistance Against Citrus Canker Disease by Rhizobacteria.

Phytopathology

First, second, third, and fourth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred; fifth author: Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred; and sixth author: China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida's Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China; Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred.

Published: September 2018

Citrus canker, caused by Xanthomonas citri subsp. citri, is an important citrus disease that causes significant economic losses worldwide. All commercial citrus varieties are susceptible to citrus canker. Currently, chemical control with copper based products is the main approach to control X. citri subsp. citri dispersal and plant colonization. However, extensive use of copper compounds can result in copper-resistant strains and cause adverse effects on the environment. Alternatives to chemical control involve the activation of citrus immunity to control the disease. Here, we investigated the ability of multiple rhizobacteria to induce a systemic defense response in cultivar Duncan grapefruit. Burkholderia territorii strain A63, Burkholderia metallica strain A53, and Pseudomonas geniculata strain 95 were found to effectively activate plant defense and significantly reduce symptom development in leaves challenged with X. citri subsp. citri. In the priming phase, root application of P. geniculata induced the expression of salicylic acid (SA)-signaling pathway marker genes (PR1, PR2, PR5, and salicylic acid carboxyl methyltransferase [SAM-SACM]). Gene expression analyses after X. citri subsp. citri challenge showed that root inoculation with P. geniculata strain 95 increased the relative levels of phenylalanine ammonia lyase 1 and SAM-SACM, two genes involved in the phenylpropanoid pathway as well as the biosynthesis of SA and methyl salicylate (MeSA), respectively. However, hormone analyses by UPLC-MS/MS showed no significant difference between SA in P. geniculata-treated plants and control plants at 8 days post-beneficial bacteria root inoculation. Moreover, P. geniculata root-treated plants contained higher reactive oxygen species levels in aerial tissues than control plants 8 days post-treatment application. This study demonstrates that rhizobacteria can modulate citrus immunity resulting in a systemic defense response against X. citri subsp. citri under greenhouse conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-07-17-0244-RDOI Listing

Publication Analysis

Top Keywords

citri subsp
20
subsp citri
20
citrus canker
12
citri
10
chemical control
8
citrus immunity
8
systemic defense
8
defense response
8
geniculata strain
8
salicylic acid
8

Similar Publications

subsp. () possesses a -specific uter embrane rotein XAC1347 (OMP) that exerts a role in the expression of the type III secretion system for pathogenicity. In this study, we reported that OMP was required for salt stress tolerance and cell membrane integrity, as well as the expression of the genes for the production of extracellular polysaccharides.

View Article and Find Full Text PDF

The São Paulo state citrus belt in Brazil is a major citrus production region. Since at least 1957, citrus plantations in this region have been affected by citrus canker, an economically damaging disease caused by subsp. ().

View Article and Find Full Text PDF

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

The Role of ClpV in the Physiology and Pathogenicity of subsp. Strain zlm1908.

Microorganisms

December 2024

College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China.

subsp. () is a Gram-negative bacterium responsible for citrus canker, a significant threat to citrus crops. ClpV is a critical protein in the type VI secretion system (T6SS) as an ATPase involved in bacterial motility, adhesion, and pathogenesis to the host for some pathogenic bacteria.

View Article and Find Full Text PDF

Characterization of MPK family members in the genus Citrus (Rutaceae) and analysis of the function of AbMPK13 in the response to citrus canker in Atalantia buxifolia.

Plant Physiol Biochem

December 2024

Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China. Electronic address:

Citrus bacterial canker has deleterious effects on global citrus production. The mitogen-activated protein kinase (MAPK) signaling cascade regulates plant defense against pathogen infection. Here, we identified 11 MAPKs in Atalantia buxifolia, a wild citrus species with high stress tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!