Opioid peptides are key regulators in cellular and intercellular physiological responses, and could be therapeutically useful for modulating several pathological conditions. Unfortunately, the use of peptide-based agonists to target centrally located opioid receptors is limited by poor physicochemical (PC), distribution, metabolic, and pharmacokinetic (DMPK) properties that restrict penetration across the blood-brain barrier via passive diffusion. To address these problems, the present paper exploits fluorinated peptidomimetics to simultaneously modify PC and DMPK properties, thus facilitating entry into the central nervous system. As an initial example, the present paper exploited the Tyr-ψ[( Z)CF═CH]-Gly peptidomimetic to improve PC druglike characteristics (computational), plasma and microsomal degradation, and systemic and CNS distribution of Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu). Thus, the fluoroalkene replacement transformed an instable in vitro tool compound into a stable and centrally distributed in vivo probe. In contrast, the Tyr-ψ[CFCH-NH]-Gly peptidomimetic decreased stability by accelerating proteolysis at the Gly-Phe position.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051889PMC
http://dx.doi.org/10.1021/acschemneuro.8b00085DOI Listing

Publication Analysis

Top Keywords

tyr-ψ[ zcf═ch]-gly
8
dmpk properties
8
zcf═ch]-gly fluorinated
4
fluorinated peptidomimetic
4
peptidomimetic improves
4
improves distribution
4
distribution metabolism
4
metabolism properties
4
properties leu-enkephalin
4
leu-enkephalin opioid
4

Similar Publications

Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.

View Article and Find Full Text PDF

Gastrin-releasing peptide receptors (GRPRs) overexpressed in many cancers are known as promising biomarkers to target tumors such as prostate, breast, and lung cancers. As the early diagnosis of the cancers can serve for better treatment of the patients, [In]In-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([In]In-RM2) was prepared using an in-house developed Sn/In generator. 0.

View Article and Find Full Text PDF

A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis.

View Article and Find Full Text PDF

Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells.

Cell Commun Signal

January 2025

Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.

Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with other associated medical problems, including atherogenic dyslipidemia. Metabolic bariatric surgery (MBS) has been shown to reduce long-term cardiovascular risk (CVR). Anti-ApoA-1 antibodies (AAA1) are independently associated with cardiovascular disease, which remains a major cause of death in individuals with obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!