The microscopic origins of Fourier's venerable law of thermal transport in quantum electron systems has remained somewhat of a mystery, given that previous derivations were forced to invoke intrinsic scattering rates far exceeding those occurring in real systems. We propose an alternative hypothesis, namely, that Fourier's law emerges naturally if many quantum states participate in the transport of heat across the system. We test this hypothesis systematically in a graphene flake junction and show that the temperature distribution becomes nearly classical when the broadening of the individual quantum states of the flake exceeds their energetic separation. We develop a thermal resistor network model to investigate the scaling of the sample and contact thermal resistances and show that the latter is consistent with classical thermal transport theory in the limit of large level broadening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.7b08816 | DOI Listing |
J Mol Model
January 2025
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Chongqing University, Chongqing 400045, China.
The purpose of this study is to analyze the large deflection problem of bimodular functionally graded truncated thin conical shells under the transverse mechanical load and non-uniform thermal load, in which two different boundary constraints of the truncated shell with two ends simply supported and fully fixed are considered. It is assumed that the temperature distribution along the thickness direction satisfies the Fourier law of heat transfer, and the material properties change exponentially along the thickness direction while different properties in tension and compression are considered. The geometric equation of the conical shell is established based on the equivalent method of curvature correction of von-Kármán deformation theory, and the analytical solution of the problem is obtained by Ritz method.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.
View Article and Find Full Text PDFAdv Model Simul Eng Sci
January 2025
Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.
We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!