Oxygen Vacancies in ZnO Nanosheets Enhance CO Electrochemical Reduction to CO.

Angew Chem Int Ed Engl

Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

Published: May 2018

As electron transfer to CO is generally considered to be the critical step during the activation of CO , it is important to develop approaches to engineer the electronic properties of catalysts to improve their performance in CO electrochemical reduction. Herein, we developed an efficient strategy to facilitate CO activation by introducing oxygen vacancies into electrocatalysts with electronic-rich surface. ZnO nanosheets rich in oxygen vacancies exhibited a current density of -16.1 mA cm with a Faradaic efficiency of 83 % for CO production. Based on density functional theory (DFT) calculations, the introduction of oxygen vacancies increased the charge density of ZnO around the valence band maximum, resulting in the enhanced activation of CO . Mechanistic studies further revealed that the enhancement of CO production by introducing oxygen vacancies into ZnO nanosheets originated from the increased binding strength of CO and the eased CO activation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201711255DOI Listing

Publication Analysis

Top Keywords

oxygen vacancies
20
zno nanosheets
12
vacancies zno
8
electrochemical reduction
8
introducing oxygen
8
oxygen
5
zno
4
nanosheets enhance
4
enhance electrochemical
4
reduction electron
4

Similar Publications

Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.

View Article and Find Full Text PDF

Spinel oxides have attracted much attention in electrocatalytic water oxidation. Specially, the Mn-based spinel structures merits fundamental investigation, as Mn is involved in water oxidation in natural photosynthesis. Herein, Al-doped Mn3O4 spinel electrocatalyst was prepared for water oxidation.

View Article and Find Full Text PDF

Synergism of piezoelectricity and photocatalysis is an effective approach for pollutant degradation and removal, and has garnered considerable attention. Nonetheless, great challenges still remain in recombination and slow migration rate of charge carriers. For response, a novel Three-in-One strategy based on MXene/ZnS/FeO (MZF) was developed to enhance the piezoelectric photocatalytic activity via achieving a triple effect: Dual Schottky heterojunction, Interface electric field, and Oxygen vacancy.

View Article and Find Full Text PDF

Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.

View Article and Find Full Text PDF

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!