Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A thermal-induced dielectric switching has been realized in two ion-pair crystal [CHN]·[HPO] (1, CHN = 3,5-diamino-1,2,4-triazolinium) through single-crystal-to-single-crystal phase transition (SCSC-PT). Upon cooling from room temperature, the 1D cation stripes that are composed of [CHN] cations have undergone a 90° sharp rotation around the c axis, accompanied by the transition of crystal stacking from loose unparallel (dynamic state) to compression parallel (static state) and reorientation of dipoles on the [CHN] cation, which thus resulted in high dielectric state to low dielectric state transformation. While on the warming run, the reverse process was rather sluggish, resulting in a reversible dielectric switching with ultralarge (about 40K wide) hysteresis loop near room temperature. It is thought that the large-sized polar cation stripes have a predominant influence on the switching properties of 1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b00597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!