Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester.

ChemSusChem

Fibre and Polymer Technology, KTH, Royal Institute of Technology, Teknikringen 56, 11428, Stockholm, Sweden.

Published: May 2018

A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201800627DOI Listing

Publication Analysis

Top Keywords

tunicate cellulose
12
transparent composites
8
composites tunicate
8
cellulose membranes
8
optically transparent
8
glycerol citric
8
citric acid
8
cellulose membrane
8
cellulose
7
composites
5

Similar Publications

Animals must avoid adhesion to objects in the environment to maintain their mobility and independence. The marine invertebrate chordate ascidians are characterized by an acellular matrix tunic enveloping their entire body for protection and swimming. The tunic of ascidian larvae consists of a surface cuticle layer and inner matrix layer.

View Article and Find Full Text PDF

Superinsulating nanofibrillar cellulose foams have the potential to replace fossil-based insulating materials, but the development is hampered by the moisture-dependent heat transport and the lack of direct measurements of phonon transport. Here, inelastic neutron scattering is used together with wide angle X-ray scattering (WAXS) and small angle neutron scattering to relate the moisture-dependent structural modifications to the vibrational dynamics and phonon transport and scattering of cellulose nanofibrils from wood and tunicate, and wood cellulose nanocrystals (W-CNC). The moisture interacted primarily with the disordered regions in nanocellulose, and WAXS showed that the crystallinity and coherence length increased as the moisture content increased.

View Article and Find Full Text PDF

Platinum and palladium nanoparticles were successfully deposited on tunicate cellulose via the photodeposition or microemulsion deposition method. Evenly distributed, small and narrow-sized particles in the range of 2-3 nm were obtained for microemulsion-prepared cellulose catalysts. The photodeposition method led to larger particle sizes, broader size distribution, and occasional agglomerations.

View Article and Find Full Text PDF

The most influential technological innovations and societal progress lie at the intersection of scientific disciplines. Today, more than ever, biology assumes a more central and participatory role at this confluence. Within the context of this scientific inter-disciplinarity, the current effort was undertaken to explore the ecology of invasive tunicates, marine invertebrates increasingly considered a nuisance to the ecology of coastal ecosystems, yet potentially a resource for diverse applications in materials chemistry, construction, composites, and engineering.

View Article and Find Full Text PDF

This study found that the sources of cellulose have a significant effect on the parameters related to the kinks present in nanocellulose. During nanocellulose preparation, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation induced partial depolymerization on whole cellulose and made the amorphous regions more susceptible to consequent mechanical treatment irrespective of cellulose sources. However, plant cellulose microfibrils were prone to break into shorter nanocellulose with fewer kinks, while bacterial and tunicate cellulose were more likely to bend rather than break, thus leading to the generation of more kinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!