Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice.

Eur J Immunol

Department of Comparative Pathobiology and Purdue Research Center for Cancer Research, Purdue University, West Lafayette, IN, USA.

Published: July 2018

The intestinal immune system is regulated by microbes and their metabolites. The roles of gut microbial metabolites in regulating intestinal inflammation and tumorigenesis are incompletely understood. We systematically studied the roles of short-chain fatty acids (SCFAs) and their receptors (GPR43 or GPR41) in regulating tissue bacterial load, acute versus chronic inflammatory responses, and intestinal cancer development. SCFA receptor-, particularly GPR43-, deficient mice were defective in mounting appropriate acute immune responses to promote barrier immunity, and developed uncontrolled chronic inflammatory responses following epithelial damage. Further, intestinal carcinogenesis was increased in GPR43-deficient mice. Dietary fiber and SCFA administration suppressed intestinal inflammation and cancer in both GPR43-dependent and independent manners. The beneficial effect of GPR43 was not mediated by altered microbiota but by host tissue cells and hematopoietic cells to a lesser degree. We found that inability to suppress commensal bacterial invasion into the colonic tissue is associated with the increased chronic Th17-driven inflammation and carcinogenesis in the intestine of GPR43-deficient mice. In sum, our results reveal the beneficial function of the SCFA-GPR43 axis in suppressing bacterial invasion and associated chronic inflammation and carcinogenesis in the colon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310065PMC
http://dx.doi.org/10.1002/eji.201747122DOI Listing

Publication Analysis

Top Keywords

microbial metabolites
8
short-chain fatty
8
fatty acids
8
tissue bacterial
8
bacterial load
8
chronic inflammation
8
intestinal inflammation
8
chronic inflammatory
8
inflammatory responses
8
gpr43-deficient mice
8

Similar Publications

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Dietary contamination with aflatoxin B (AFB), which can lead to severe liver damage, poses a great threat to livestock and poultry breeding and has detrimental impacts on food safety. Selenomethionine (SeMet), with anti-inflammatory, antioxidative, and detoxifying effects, is regarded as a beneficial food additive. However, whether SeMet can reduce AFB-induced liver injury and intestinal microbial disorders in rabbits remains to be revealed.

View Article and Find Full Text PDF

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

Metabolic Blockade-Based Genome Mining of SDU050: Discovery of Diverse Secondary Metabolites.

Mar Drugs

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type SDU050, alongside five additional metabolite classes, including three novel cytochalasins (-), obtained from a mutant strain through the metabolic blockade strategy.

View Article and Find Full Text PDF

New technology has opened opportunities for research and exploration of deep-water ecosystems, highlighting deep-sea coral reefs as a rich source of novel bioactive natural products. During our ongoing investigation of the chemodiversity of the Irish deep sea and the soft coral we report 12 unreported cadinene-like functionalized sesquiterpenes, anthoteibinenes F-Q. The metabolites were isolated using both bioassay- and H NMR-guided approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!