Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The degradation phenomena of thin-film solid state batteries caused by cycling at a high cut-off voltage and different temperatures were studied using an improved potentiometric measurement of entropy change combined with electrochemical impedance analysis and incremental capacity analysis. Entropy profiling is demonstrated as a viable non-destructive technique for solid state batteries that is sensitive to structural changes in electrodes during galvanostatic cycling, and is complementary to other techniques for studying degradation. The characteristic peaks and valleys in the entropy profile as a function of the state-of-charge could be closely correlated to theories of phase transitions in the cathode material. This technique is therefore a useful technique to help understand and diagnose the degradation mechanism, and specify the state-of-health in a promising new battery technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp08588e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!