Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883185PMC
http://dx.doi.org/10.3389/fphys.2018.00293DOI Listing

Publication Analysis

Top Keywords

postural control
28
control
14
fractal analysis
12
frequency-specific fractal
8
control strategies
8
frequency ranges
8
scaling phenomena
8
specific frequency
8
control loop
8
postural
7

Similar Publications

Study Design: Prospective cohort study.

Objective: This study aimed to investigate the durability of postural stability after ASD correction surgery and its' association with clinical outcomes.

Summary Of Background Data: The prevalence of symptomatic adult spinal deformity (ASD) necessitates surgical intervention, aiming to correct global spinal balance and spinopelvic parameters.

View Article and Find Full Text PDF

Study Design: A randomized controlled trial using a pretest-posttest control group design.

Purpose: This study investigated the effects of core stabilization exercises (CSEs) on cervical sagittal vertical alignment (cSVA), Cobb's angle, and Neck Disability Index (NDI) scores in patients with forward head posture (FHP).

Overview Of Literature: FHP is a local poor neck posture.

View Article and Find Full Text PDF

Changes in thoracic erector spinae regional activation during postural adjustments and functional reaching tasks after spinal cord injury.

J Neurophysiol

January 2025

Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.

Many individuals with incomplete spinal cord injury (SCI) exhibit reduced volitional control of trunk muscles, such as impaired voluntary contractions of the erector spinae (ES), due to damage to the neural pathways regulating sensorimotor function. Studies using conventional bipolar electromyography (EMG) showed alterations in the overall, or global, activation of the trunk muscles in people with SCI. However, how activation varied across specific regions within the ES, referred to as regional activation, remains unknown.

View Article and Find Full Text PDF

Background: Aquatic training is known for its effective and gentle rehabilitation benefits, but its impact on athletes with chronic ankle instability (CAI) remains underexplored. This study compares the effects of water-based and land-based balance training on functional performance, dynamic balance, fear of reinjury, and quality of life in athletes with CAI.

Methods: Forty-one athletes with chronic ankle instability (CAI) were randomly assigned to water-based (WBBE, n = 21) or land-based (LBBE, n = 20) balance exercise groups, completing 24 sessions of 30-45 min over 8 weeks.

View Article and Find Full Text PDF

Background: Ankle joint position sense (AJPS) accuracy and postural control are crucial for maintaining balance and stability, particularly in individuals with plantar fasciitis who may experience proprioceptive and functional impairments. Understanding how psychosocial factors, such as pain catastrophizing, and biomechanical measures, like muscle strength and gait parameters related to proprioception and postural control, can inform more effective treatment approaches. This study aimed to (1) examine the relationship between AJPS accuracy and biomechanical factors-including postural stability, lower limb muscle strength, and gait parameters-in individuals with plantar fasciitis d (2) analyze the impact of psychosocial factors, including pain catastrophizing, physical activity level, and quality of life, on AJPS accuracy and postural control in this population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!