AI Article Synopsis

  • Previous studies primarily focused on elastic scattering or self-emission of electromagnetic radiation from particles, but this paper explores both phenomena when a stationary particle or group is subjected to an external electromagnetic field.
  • The authors apply semi-classical fluctuational electrodynamics to rigorously formulate the scattering-emission problem, deriving key mathematical equations essential for understanding these interactions.
  • They demonstrate that the calculations for self-emission and elastic scattering can be distinctly separated, simplifying the process of computing important optical properties.

Article Abstract

The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889947PMC
http://dx.doi.org/10.1016/j.jqsrt.2017.06.003DOI Listing

Publication Analysis

Top Keywords

electromagnetic field
12
fluctuational electrodynamics
12
fixed multi-particle
8
electromagnetic radiation
8
elastically scattered
8
electromagnetic
6
field
6
electromagnetic scattering
4
scattering emission
4
fixed
4

Similar Publications

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

Angle-controlled strong and weak coupling in photon molecules.

Sci Rep

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.

View Article and Find Full Text PDF

This study investigated the implementation and impact of fifth-generation (5G) wireless millimeter wave (mmW) technology. 5G offers significant advancements over previous generations and supports additional frequency bands, including mmW, to enhance mobile broadband with ultra-reliable, low-latency communications, supporting a high volume of diverse communications. This technology is expected to enable billions of new connections in the Internet of Things (IoT), fostering innovations in various sectors including healthcare, manufacturing, and education.

View Article and Find Full Text PDF

Porous polymers: structure, fabrication and application.

Mater Horiz

January 2025

Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.

The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials.

View Article and Find Full Text PDF

Multichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!