Plasmodium was first identified in a goat in Angola in 1923, and only recently characterized by DNA isolation from a goat blood sample in Zambia. Goats were first domesticated in the Fertile Crescent approximately 10,000 years ago, and are now globally distributed. It is not known if the Plasmodium identified in African goats originated from parasites circulating in the local ungulates, or if it co-evolved in the goat before its domestication. To address this question, we performed PCR-based surveillance using a total of 1,299 goat blood samples collected from Sudan and Kenya in Africa, Iran in west Asia, and Myanmar and Thailand in southeast Asia. Plasmodium DNA was detected from all locations, suggesting that the parasite is not limited to Africa, but widely distributed. Whole mitochondrial DNA sequences revealed that there was only one nucleotide substitution between Zambian/Kenyan samples and others, supporting the existence of a goat-specific Plasmodium species, presumably Plasmodium caprae, rather than infection of goats by local ungulate malaria parasites. We also present the first photographic images of P. caprae, from one Kenyan goat sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895593 | PMC |
http://dx.doi.org/10.1038/s41598-018-24048-0 | DOI Listing |
Cells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.
View Article and Find Full Text PDFSci Rep
January 2025
West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
Gossypol has demonstrated significant antimalarial activity against chloroquine-resistant and susceptible Plasmodium falciparum parasites. However, data on its potency in clinical isolates of P. falciparum remains limited.
View Article and Find Full Text PDFInt J Pharm
January 2025
Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Malaria remains the fifth deadliest parasitic infection worldwide, despite significant advancements in technology. A major challenge in combating this disease lies in the growing resistance of malaria parasites to antimalarial drugs and insect vectors to insecticides. The emerging inefficacy of artemisinin-based combination therapies (ACTs) further exacerbates the issue.
View Article and Find Full Text PDFVaccine
January 2025
Department of Global Health, George Washington University, Washington, D.C., USA. Electronic address:
Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!