It has been suggested that common mechanisms may underlie the pathogenesis of primary open-angle glaucoma (POAG) and steroid-induced glaucoma (SIG). The biomechanical properties (stiffness) of the trabecular meshwork (TM) have been shown to differ between POAG patients and unaffected individuals. While features such as ocular hypertension and increased outflow resistance in POAG and SIG have been replicated in mouse models, whether changes of TM stiffness contributes to altered IOP homeostasis remains unknown. We found that outer TM was stiffer than the inner TM and, there was a significant positive correlation between outflow resistance and TM stiffness in mice where conditions are well controlled. This suggests that TM stiffness is intimately involved in establishing outflow resistance, motivating further studies to investigate factors underlying TM biomechanical property regulation. Such factors may play a role in the pathophysiology of ocular hypertension. Additionally, this finding may imply that manipulating TM may be a promising approach to restore normal outflow dynamics in glaucoma. Further, novel technologies are being developed to measure ocular tissue stiffness in situ. Thus, the changes of TM stiffness might be a surrogate marker to help in diagnosing altered conventional outflow pathway function if those technologies could be adapted to TM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895808PMC
http://dx.doi.org/10.1038/s41598-018-24165-wDOI Listing

Publication Analysis

Top Keywords

outflow resistance
16
trabecular meshwork
8
stiffness mice
8
ocular hypertension
8
changes stiffness
8
stiffness
7
outflow
5
relationship outflow
4
resistance
4
resistance trabecular
4

Similar Publications

Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP.

View Article and Find Full Text PDF

Background: Pulmonary embolism (PE) is one of the most challenging diagnoses in emergency medicine, mainly because symptoms range from asymptomatic disease to sudden death. The role of echocardiography in the workup of suspected PE has been supportive and used primarily to assess the right ventricular (RV) size and function, which is important for risk stratification. Several echocardiographic parameters described in the literature lack the desired accuracy.

View Article and Find Full Text PDF

Fabrication and in vivo testing of a sub-mm duckbill valve for hydrocephalus treatment.

Microsyst Nanoeng

December 2024

Department of Electrical, Computer and Energy Engineering, Arizona State University, 650 E. Tyler Mall, Tempe, AZ, USA.

Hydrocephalus is characterized by the accumulation of excess cerebrospinal fluid (CSF) in the cranium due to an imbalance between production and absorption of CSF. The standard treatment involves the implantation of a shunt to divert excess CSF into the peritoneal cavity, but these shunts exhibit high failure rates over time. In pursuit of improved reliability and performance, this study proposes a miniaturized valve designed to mimic the natural one-way valve function of the arachnoid granulations and thereby replace the shunts.

View Article and Find Full Text PDF

Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants.

J Hazard Mater

December 2024

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland. Electronic address:

The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques.

View Article and Find Full Text PDF

High-resolution modeling of aqueous humor dynamics in the conventional outflow pathway of a normal human donor eye.

Comput Methods Programs Biomed

November 2024

Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.

Background And Objective: The conventional aqueous outflow pathway, which includes the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and inner wall endothelium of Schlemm's canal (SC) and its basement membrane, plays a significant role in regulating intraocular pressure (IOP) by controlling aqueous humor outflow resistance. Despite its significance, the biomechanical and hydrodynamic properties of this region remain inadequately understood. Fluid-structure interaction (FSI) and computational fluid dynamics (CFD) modeling using high-resolution microstructural images of the outflow pathway provides a comprehensive method to estimate these properties under varying conditions, offering valuable understandings beyond the capabilities of current imaging techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!