Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: For stroke survivors, balance deficits that persist after the completion of the rehabilitation process lead to a significant risk of falls. We have recently developed a balance-assessment robot (BAR-TM) that enables assessment of balancing abilities during walking. The purpose of this study was to test feasibility of using the BAR-TM in an experimental perturbed-balance training program with a selected high-functioning stroke survivor.
Methods: A control and an individual with right-side chronic hemiparesis post-stroke were studied. The individual post-stroke underwent thirty sessions of balance-perturbed training that involved walking on an instrumented treadmill while the BAR-TM delivered random pushes to the participant's pelvis; these pushes were in various directions, at various speeds, and had various perturbation amplitudes. We assessed kinematics, kinetics, electromyography, and spatio-temporal responses to outward-directed perturbations of amplitude 60 N (before training) and 60 N and 90 N (after training) commencing on contact of either the nonparetic-left foot (LL-NP/L perturbation) or the paretic-right foot (RR-P/R perturbation) while the treadmill was running at a speed of 0.4 m/s.
Results: Before training, the individual post-stroke primarily responded to LL-NP/L perturbations with an in-stance response on the non-paretic leg in a similar way to the control participant. After training, the individual post-stroke added adequate stepping by making a cross-step with the paretic leg that enabled successful rejection of the perturbation at lower and higher amplitudes. Before training, the individual post-stroke primarily responded to RR-P/R perturbations with fast cross-stepping using the left, non-paretic leg while in-stance response was entirely missing. After training, the stepping with the non-paretic leg was supplemented by partially recovered ability to exercise in-stance responses on the paretic leg and this enabled successful rejection of the perturbation at lower and higher amplitudes. The assessed kinematics, kinetics, electromyography, and spatio-temporal responses provided insight into the relative share of each balancing strategy that the selected individual post-stroke used to counteract LL-NP/L and RR-P/R perturbations before and after the training.
Conclusions: The main finding of this case-control study is that robot-based perturbed-balance training may be a feasible approach. It resulted in an improvement the selected post-stroke participant's ability to counteract outward-directed perturbations.
Trial Registration: ClinicalTrials.gov Identifier: NCT03285919 - retrospectively registered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896154 | PMC |
http://dx.doi.org/10.1186/s12984-018-0373-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!