Background: Coxiella burnetii is a Gram-negative gammaproteobacterium and zoonotic agent of Q fever. C. burnetii's genome contains an abundance of pseudogenes and numerous selfish genetic elements. MITEs (miniature inverted-repeat transposable elements) are non-autonomous transposons that occur in all domains of life and are thought to be insertion sequences (ISs) that have lost their transposase function. Like most transposable elements (TEs), MITEs are thought to play an active role in evolution by altering gene function and expression through insertion and deletion activities. However, information regarding bacterial MITEs is limited.

Results: We describe two MITE families discovered during research on small non-coding RNAs (sRNAs) of C. burnetii. Two sRNAs, Cbsr3 and Cbsr13, were found to originate from a novel MITE family, termed QMITE1. Another sRNA, CbsR16, was found to originate from a separate and novel MITE family, termed QMITE2. Members of each family occur ~ 50 times within the strains evaluated. QMITE1 is a typical MITE of 300-400 bp with short (2-3 nt) direct repeats (DRs) of variable sequence and is often found overlapping annotated open reading frames (ORFs). Additionally, QMITE1 elements possess sigma-70 promoters and are transcriptionally active at several loci, potentially influencing expression of nearby genes. QMITE2 is smaller (150-190 bps), but has longer (7-11 nt) DRs of variable sequences and is mainly found in the 3' untranslated region of annotated ORFs and intergenic regions. QMITE2 contains a GTAG repetitive extragenic palindrome (REP) that serves as a target for IS1111 TE insertion. Both QMITE1 and QMITE2 display inter-strain linkage and sequence conservation, suggesting that they are adaptive and existed before divergence of C. burnetii strains.

Conclusions: We have discovered two novel MITE families of C. burnetii. Our finding that MITEs serve as a source for sRNAs is novel. QMITE2 has a unique structure and occurs in large or small versions with unique DRs that display linkage and sequence conservation between strains, allowing for tracking of genomic rearrangements. QMITE1 and QMITE2 copies are hypothesized to influence expression of neighboring genes involved in DNA repair and virulence through transcriptional interference and ribonuclease processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896051PMC
http://dx.doi.org/10.1186/s12864-018-4608-yDOI Listing

Publication Analysis

Top Keywords

transposable elements
12
novel mite
12
mites miniature
8
miniature inverted-repeat
8
inverted-repeat transposable
8
coxiella burnetii
8
mite families
8
mite family
8
family termed
8
drs variable
8

Similar Publications

Transcriptional activation of the embryonic genome (EGA) is a major developmental landmark enabling the embryo to become independent from maternal control. The magnitude and control of transcriptional reprogramming during this event across mammals remains poorly understood. Here, we developed Smart-seq+5' for high sensitivity, full-length transcript coverage and simultaneous capture of 5' transcript information from single cells and single embryos.

View Article and Find Full Text PDF

Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3.

Genome Biol

January 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.

Background: The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation.

Results: In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.

Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.

View Article and Find Full Text PDF

Genomic and Methylomic Signatures Associated With the Maintenance of Genome Stability and Adaptive Evolution in Two Closely Allied Wolf Spiders.

Mol Ecol Resour

January 2025

Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China.

Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P.

View Article and Find Full Text PDF

Microevolutionary processes shape adaptive responses to heterogeneous environments, where these effects vary both among and within species. However, it remains largely unknown to which degree signatures of adaptation to environmental drivers can be detected based on the choice of spatial scale and genomic marker. We studied signatures of local adaptation across two levels of spatial extents, investigating complementary types of genomic variants-single-nucleotide polymorphisms (SNPs) and polymorphic transposable elements (TEs)-in populations of the alpine model plant species Arabis alpina .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!