is an important medicinal plant with several pharmacologically active alkaloids and is also used as an ornamental landscape plant. The purpose of this study is to complete and characterize the chloroplast (cp) genome of and compare genomic features to other Myrtales species' cp genomes. The analysis showed that has a total length of 159,219 bp with a typical quadripartite structure containing two identical inverted repeats (IRs) of 25,643 bp isolated by one large single copy (LSC) of 88,571 bp and one small single copy (SSC) of 18,822 bp. The cp genome contains 129 genes with eight ribosomal RNAs, 30 transfer RNAs, and 78 protein coding genes, in which 17 genes are duplicated in two IR regions. The genome organization including gene type and number and guanine-cytosine (GC) content is analyzed among the 12 cp genomes in this study. Approximately 255 simple sequence repeats (SSRs) and 16 forward, two reverses, and two palindromic repeats were identified in the H. myrtifolia cp genome. By comparing the whole cp genome with 11 other Myrtales species, the results showed that the sequence similarity was high between coding regions while sequence divergence was high between intergenic regions. By employing the full cp genomes for phylogenetic analysis, structural and sequence differences were characterized between and 11 Myrtales species illustrating what patterns are common in the evolution of cp genomes within the Myrtales. The first entire cp genome in the genus provides a valuable resource for further studies in these medicinally and ornamentally important taxa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017443PMC
http://dx.doi.org/10.3390/molecules23040846DOI Listing

Publication Analysis

Top Keywords

chloroplast genome
8
single copy
8
myrtales species
8
genome
7
myrtales
5
complete chloroplast
4
genome heimia
4
heimia myrtifolia
4
myrtifolia comparative
4
comparative analysis
4

Similar Publications

The Hypericaceae family, comprising nine genera and over seven hundred species, includes plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three species: , , and , and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.

View Article and Find Full Text PDF

is a member of the Styracaceae family, which is well-known for its remarkable ornamental and medicinal properties. In this research, we conducted comparative analysis of the chloroplast genomes from four samples of representing . The results demonstrated that the chloroplast genome of four samples ranging from 157,103 bp to 158,357 bp exhibited a typical quadripartite structure, including one large single-copy (LSC) region (90,131 bp to 90,342 bp), one small single-copy (SSC) region (18,467 bp to 18,785 bp), and two inverted repeat regions (IRs) (24,115 bp to 24,261 bp).

View Article and Find Full Text PDF

Background: Phaius Lour. (Collabieae, Orchidaceae) is a small genus consisting of about 45 species, with highly ornamental and medicinal values. However, the phylogenetic relationship of Phaius among Calanthe s.

View Article and Find Full Text PDF

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!