Electrospun Polythiophene Phenylenes for Tissue Engineering.

Biomacromolecules

Polymer Electronics Research Centre, School of Chemical Sciences , The University of Auckland, Private Bag 92019, Auckland , New Zealand.

Published: May 2018

This research focuses on the design of biocompatible materials/scaffold suitable for use for tissue engineering. Porous fiber mats were produced through electrospinning of polythiophene phenylene (PThP) conducting polymers blended with poly(lactide- co-glycolic acid) (PLGA). A peptide containing an arginylglycylaspartic acid (RGD) fragment was synthesized using solid phase peptide synthesis and subsequently grafted onto a PThP polymer using azide-alkyne "click" chemistry. The obtained RGD functionalized PThP was also electrospun into a fiber mat. The electrospun mats' morphology, roughness and stiffness were studied by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM) and their electroactivity by cyclic voltammetry. The fibers show excellent cytocompatibility in culture assays with human dermal fibroblasts-adult (HDFa) and human epidermal melanocytes-adult (HEMa) cells. The electrospun fibers' roughness and stiffness changed after exposing the fiber mats to the cell culture medium (measured in dry state), but these changes did not affect the cell proliferation. The cytocompatibility of our porous scaffolds was established for their applicability as cell culture scaffolds by means of investigating mitochondrial activity of HDFa and HEMa cells on the scaffolds. The results revealed that the RGD moieties containing PThP scaffolds hold a promise in biomedical applications, including skin tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.8b00341DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
fiber mats
8
roughness stiffness
8
hema cells
8
cell culture
8
electrospun
4
electrospun polythiophene
4
polythiophene phenylenes
4
phenylenes tissue
4
engineering focuses
4

Similar Publications

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!