Foraging decisions tend to drive individuals toward maximising energetic gains within a patchy environment. This study aims to determine the extent to which rainfall, and associated changes in food availability, can explain foraging decisions within a patchy urbanised landscape, using the Australian white ibis as a model species. Ibis density, food consumption rates and food abundance (both natural and anthropogenic) were recorded during dry and wet weather within urban parks in Sydney, Australia. Rainfall influenced ibis density in these urban parks. Of the four parks assessed, the site with the highest level of anthropogenic food and the lowest abundance of natural food (earthworms), irrespective of weather, was observed to have three times the density of ibis. Rainfall significantly increased the rate of earthworm consumption as well as their relative availability in all sites. Overall, these density and consumption measures indicate that anthropogenic derived foods, mainly from direct feeding by people, explain the apparent distribution of ibis across urban parks. However, there was evidence of prey-switching when the availability of natural foods increased following rainfall, perhaps reflecting selection of particular nutrients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894991PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194484PLOS

Publication Analysis

Top Keywords

foraging decisions
12
urban parks
12
ibis density
8
abundance natural
8
food
5
ibis
5
rain drives
4
drives foraging
4
urban
4
decisions urban
4

Similar Publications

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests.

View Article and Find Full Text PDF

Those with diabetes mellitus are at high-risk of developing psychiatric disorders, especially mood disorders, yet the link between hyperglycemia and altered motivation has not been thoroughly explored. Here, we characterized value-based decision-making behavior of a streptozocin-induced diabetic mouse model on Restaurant Row, a naturalistic neuroeconomic foraging paradigm capable of behaviorally capturing multiple decision systems known to depend on dissociable neural circuits. Mice made self-paced choices on a daily limited time-budget, accepting or rejecting reward offers based on cost (delays cued by tone pitch) and subjective value (flavors), in a closed-economy system tested across months.

View Article and Find Full Text PDF

Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.

View Article and Find Full Text PDF

Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!