The article describes the use of facile one-pot, high-yielding reactions to synthesize substituted 3,4-dimethyl-1-pyrrole-2-carboxamides - and carbohydrazide analogues - as potential antifungal and antimicrobial agents. The structural identity and purity of the synthesized compounds were assigned based on appropriate spectroscopic techniques. Synthesized compounds were assessed in vitro for antifungal and antibacterial activity. The compounds , and were found to be the most potent against , with MIC values of 0.039 mg/mL. The compound bearing a 2, 6-dichloro group on the phenyl ring was found to be the most active broad spectrum antibacterial agent with a MIC value of 0.039 mg/mL. The mode of action of the most promising antifungal compounds (one representative from each series; and ) was established by their molecular docking with the active site of sterol 14α-demethylase. Molecular docking studies revealed a highly spontaneous binding ability of the tested compounds in the access channel away from catalytic heme iron of the enzyme, which suggested that the tested compounds inhibit this enzyme and would avoid heme iron-related deleterious side effects observed with many existing antifungal compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017109 | PMC |
http://dx.doi.org/10.3390/molecules23040875 | DOI Listing |
Environ Sci Technol
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.
View Article and Find Full Text PDF3 Biotech
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014 India.
Unlabelled: Coumarin derivatives are one of the naturally occurring bioactive molecule. Dihydropyrano coumarins are one of the medicinally important derivatives of coumarin which have been reported to exhibit various bioactivity. However, there are no reports on their antihyperglycemic activities.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!