We used voltage-clamp recordings from somatic outside-out macropatches to determine the amplitude and biophysical properties of putative Kv1-mediated currents in layer 5 pyramidal neurons (PNs) from mice expressing EGFP under the control of promoters for etv1 or glt. We then used whole cell current-clamp recordings and Kv1-specific peptide blockers to test the hypothesis that Kv1 channels differentially regulate action potential (AP) voltage threshold, repolarization rate, and width as well as rheobase and repetitive firing in these two PN types. We found that Kv1-mediated currents make up a similar percentage of whole cell K current in both cell types, and only minor biophysical differences were observed between PN types or between currents sensitive to different Kv1 blockers. Putative Kv1 currents contributed to AP voltage threshold in both PN types, but AP width and rate of repolarization were only affected in etv1 PNs. Kv1 currents regulate rheobase, delay to the first AP, and firing rate similarly in both cell types, but the frequency-current slope was much more sensitive to Kv1 block in etv1 PNs. In both cell types, Kv1 block shifted the current required to elicit an onset doublet of action potentials to lower currents. Spike frequency adaptation was also affected differently by Kv1 block in the two PN types. Thus, despite similar expression levels and minimal differences in biophysical properties, Kv1 channels differentially regulate APs and repetitive firing in etv1 and glt PNs. This may reflect differences in subcellular localization of channel subtypes or differences in the other K channels expressed. NEW & NOTEWORTHY In two types of genetically identified layer 5 pyramidal neurons, α-dendrotoxin blocked approximately all of the putative Kv1 current (on average). We used outside-out macropatches and whole cell recordings at 33°C to show that despite similar expression levels and minimal differences in biophysical properties, Kv1 channels differentially regulate action potentials and repetitive firing in etv1 and glt pyramidal neurons. This may reflect differences in subcellular localization of channel subtypes or differences in the other K channels expressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139458PMC
http://dx.doi.org/10.1152/jn.00691.2017DOI Listing

Publication Analysis

Top Keywords

pyramidal neurons
16
kv1-mediated currents
12
biophysical properties
12
etv1 glt
12
kv1 channels
12
channels differentially
12
differentially regulate
12
repetitive firing
12
cell types
12
kv1 block
12

Similar Publications

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.

View Article and Find Full Text PDF

Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics.

Cell Rep

January 2025

Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada.

Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices.

View Article and Find Full Text PDF

Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!