Constructing a Novel Hypoxia-Inducible Bidirectional shRNA Expression Vector for Simultaneous Gene Silencing in Colorectal Cancer Gene Therapy.

Cancer Biother Radiopharm

1 Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran .

Published: April 2018

Background: Nonspecific siRNA expression limits its application in cancer gene therapy. Therefore, a tightly regulated and reversibly inducible RNAi system is required to conditionally control the gene expression. This investigation aims at constructing a hypoxia/colorectal tumor dual-specific bidirectional short hairpin RNA (shRNA) expression vector.

Materials And Methods: First, carcinoma embryonic antigen (CEA) promoter designed in two directions. Then, pRNA-bipHRE-CEA vector was constructed by insertion of the vascular endothelial growth factor enhancer between two promoters for hypoxic cancer-specific gene expression. To confirm the therapeutic effect of the dual-specific vector, two shRNA oligonucleotides were inserted in the downstream of each promoter. QRT-polymerase chain reaction and western blot assays were performed to estimate the mRNA and protein expression levels.

Results: Both mRNA and protein levels were significantly reduced (50%-60%) in the hypoxic colorectal cancer-treated cells when compared with the controls.

Conclusion: The novel bidirectional hypoxia-inducible shRNA expression vector may be efficient in colorectal cancer-specific gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cbr.2017.2401DOI Listing

Publication Analysis

Top Keywords

shrna expression
12
gene therapy
12
expression vector
8
cancer gene
8
gene expression
8
cancer-specific gene
8
mrna protein
8
expression
7
gene
6
constructing novel
4

Similar Publications

PRDX2 induces tumor immune evasion by modulating the HDAC3-Galectin-9 axis in lung adenocarcinoma cells.

J Transl Med

January 2025

Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.

Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.

View Article and Find Full Text PDF

Peri-centrosomal localization of small interfering RNAs in C. elegans.

Sci China Life Sci

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.

The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Anticancer Effects of MAPK6 siRNA-Loaded PLGA Nanoparticles in the Treatment of Breast Cancer.

J Cell Mol Med

January 2025

Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkiye.

siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!