Blood is an ideal body fluid for the discovery or monitoring of diagnostic and prognostic protein biomarkers. However, discovering robust biomarkers requires the analysis of large numbers of samples to appropriately represent interindividual variability. To address this analytical challenge, we established a high-throughput and cost-effective proteomics workflow for accurate and comprehensive proteomics at an analytical depth applicable for clinical studies. For validation, we processed 1 μL each from 62 plasma samples in 96-well plates and analyzed the product by quantitative data-independent acquisition liquid chromatography/mass spectrometry; the data were queried using feature quantification with Spectronaut. To show the applicability of our workflow to serum, we analyzed a unique set of samples from 48 chronic pancreatitis patients, pre and post total pancreatectomy with islet autotransplantation (TPIAT) surgery. We identified 16 serum proteins with statistically significant abundance alterations, which represent a molecular signature distinct from that of chronic pancreatitis. In summary, we established a cost-efficient high-throughput workflow for comprehensive proteomics using PVDF-membrane-based digestion that is robust, automatable, and applicable to small plasma and serum volumes, e.g., finger stick. Application of this plasma/serum proteomics workflow resulted in the first mapping of the molecular implications of TPIAT on the serum proteome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791589PMC
http://dx.doi.org/10.1021/acs.jproteome.8b00111DOI Listing

Publication Analysis

Top Keywords

proteomics workflow
12
plasma serum
8
mapping molecular
8
total pancreatectomy
8
pancreatectomy islet
8
islet autotransplantation
8
comprehensive proteomics
8
chronic pancreatitis
8
serum
5
proteomics
5

Similar Publications

Establishing age-group specific reference intervals of human salivary proteome and its preliminary application for epilepsy diagnosis.

Sci China Life Sci

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.

Salivary proteins serve multifaceted roles in maintaining oral health and hold significant potential for diagnosing and monitoring diseases due to the non-invasive nature of saliva sampling. However, the clinical utility of current saliva biomarker studies is limited by the lack of reference intervals (RIs) to correctly interpret the testing result. Here, we developed a rapid and robust saliva proteome profiling workflow, obtaining coverage of >1,200 proteins from a 50-µL unstimulated salivary flow with 30 min gradients.

View Article and Find Full Text PDF

As the primary innate immune cells of the brain, microglia play a key role in various homeostatic and disease-related processes. To carry out their numerous functions, microglia adopt a wide range of phenotypic states. The proteomic landscape represents a more accurate molecular representation of these phenotypes; however, microglia present unique challenges for proteomic analysis.

View Article and Find Full Text PDF

Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins.

View Article and Find Full Text PDF

[Advances in molecular networking technology for discovering emerging contaminants and transformation products].

Se Pu

January 2025

State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China.

Emerging contaminants and their transformation products are widely distributed in the environment. These pollutants carry unknown risks owing to their persistence, migration, and toxicity. The wide variety and complex structures of these substances render them difficult to identify using only target analysis.

View Article and Find Full Text PDF

Identification of plasma protein biomarkers for endometriosis and the development of statistical models for disease diagnosis.

Hum Reprod

December 2024

Department of Obstetrics and Gynecology, University of Melbourne and Gynecology Research Centre, Royal Women's Hospital, Melbourne, VIC, Australia.

Study Question: Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis?

Summary Answer: A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis.

What Is Known Already: Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!