In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was directly immobilized on the plasma-polymerized propionaldehyde (PA) and allylglycidyl ether (AGE) surface through the imine bonding and epoxy-amine bonding, respectively. Aldehyde and epoxide plasma-polymerization were carried out at plasma power 60 W for 10 min and monomers were used to PA and AGE. After the plasma-polymerization and rhBMP-2 immobilization, substrate surfaces were characterized by contact angle, field emission scanning electron microscopy, and attenuated total reflectance Fourier transform infrared. In addition, the biological activities of MC3T3-E1 cells were evaluated by initial adhesion and alkaline phosphate (ALP) activity. The rhBMP-2 immobilized PA and AGE surfaces promoted significantly higher ALP activity of MC3T3-E1 cells than pristine surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2017.13312 | DOI Listing |
In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was directly immobilized on the plasma-polymerized propionaldehyde (PA) and allylglycidyl ether (AGE) surface through the imine bonding and epoxy-amine bonding, respectively. Aldehyde and epoxide plasma-polymerization were carried out at plasma power 60 W for 10 min and monomers were used to PA and AGE. After the plasma-polymerization and rhBMP-2 immobilization, substrate surfaces were characterized by contact angle, field emission scanning electron microscopy, and attenuated total reflectance Fourier transform infrared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!