The aim of this study was to evaluate the antibacterial activity against Porphyromonas gingivalis and osteoblast viability of heat and plasma treatment of TiO2 nanotubes. Specimens were divided into four groups: the Ti (polished titanium), Nano (TiO2 nanotube), NH 300 (heat treated at 300 °C on TiO2 nanotube) and NH 400 (heat treated at 400 °C on TiO2 nanotube) groups. Antibacterial activity and osteoblast viability were evaluated in the four groups according to plasma treatment. Surface adhesion of Porphyromonas gingivalis was evaluated by crystal violet assay. Osteoblast viability was examined by XTT assay. Adhesion of Porphyromonas gingivalis was significantly decreased in the Ti group, Nano group and NH 300 group after plasma treatment (P < 0.05). Osteoblast viability was increased in the NH 400 group in comparison to the Ti group before plasma treatment (P < 0.05). Within the limitations of this study, plasma treatment was found to reduce the adhesion of P. gingivalis but had no influence on osteoblast activation.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2017.13328DOI Listing

Publication Analysis

Top Keywords

osteoblast viability
20
plasma treatment
20
antibacterial activity
12
porphyromonas gingivalis
12
tio2 nanotube
12
activity osteoblast
8
tio2 nanotubes
8
heat treated
8
°c tio2
8
adhesion porphyromonas
8

Similar Publications

The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.

View Article and Find Full Text PDF

Tortoiseshell and antler, the main components of , are natural products that can be used as traditional Chinese medicine (TCM) to alleviate osteoporosis and osteoarthritis. However, research on the active ingredients in tortoiseshell and antler for alleviating osteoporosis and osteoarthritis remains insufficient. This study primarily compares the antioxidant capacity of tortoiseshell gelatin and antler gelatin and their bioactive peptides, as well as their effects on the cell viability of MC3T3-E1 osteoblasts and HIG-82 chondrocytes.

View Article and Find Full Text PDF

Hyaluronic acid (HA) has received considerable attention in the reconstruction of lost periodontal tissues. HA has been proposed to play a role in cell proliferation, differentiation, migration, and cell-matrix as well as cell-cell interactions. Although various studies have been conducted, further research is needed to expand our knowledge based on HA such as its effects on cell proliferation and osteogenic differentiation.

View Article and Find Full Text PDF

Prolonged glucocorticoid (GC) treatment increases oxidative stress, triggers apoptosis of osteoblasts, and contributes to osteoporosis. Tocotrienol, as an antioxidant, could protect the osteoblasts and preserve bone quality under glucocorticoid treatment. From this study, we aimed to determine the effects of tocotrienol on MC3T3-E1 murine pre-osteoblastic cells treated with GC.

View Article and Find Full Text PDF

Chitosan is gaining scientific recognition as a hydrogel in bone tissue engineering (BTE) due to its ability to support osteoblast attachment and proliferation. However, its low mechanical strength and lack of structural integrity limit its application. Nanometric hydroxyapatite (HA) is used as a filler to enhance the mechanical properties and osteoinductivity of hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!