A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport mechanisms in a puckered graphene-on-lattice. | LitMetric

Transport mechanisms in a puckered graphene-on-lattice.

Nanoscale

Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072, People's Republic of China.

Published: April 2018

Understanding the fundamental properties of graphene when its topography is patterned by the use of a compliant substrate is essential to improve the performances of graphene sensors. Here we suspend a graphene monolayer on SiO2 nanopillar arrays to form a puckered graphene-on-lattice and investigate the strain and electrical transport at the nanoscale. Despite a nonuniform strain in the graphene-on-lattice, the resistivity is governed by thermally activated transport and not the strain. We show that the high thermal activation energy results from a low charge carrier density and a periodic change of the chemical potential induced by the interaction of the graphene monolayer with the nanopillars, making the use of graphene-on-lattice attractive to further increase the electrical response of graphene sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr00678dDOI Listing

Publication Analysis

Top Keywords

puckered graphene-on-lattice
8
graphene sensors
8
graphene monolayer
8
graphene
5
transport mechanisms
4
mechanisms puckered
4
graphene-on-lattice
4
graphene-on-lattice understanding
4
understanding fundamental
4
fundamental properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!