Delayed gravitational collapse of colloidal gels is characterized by initially slow compaction that gives way to rapid bulk collapse, posing interesting questions about the underlying mechanistic origins. Here we study gel collapse utilizing large-scale dynamic simulation of a freely draining gel of physically bonded particles subjected to gravitational forcing. The hallmark regimes of collapse are recovered: slow compaction, transition to rapid collapse, and long-time densification. Microstructural changes are monitored by tracking particle positions, coordination number, and bond dynamics, along with volume fraction, osmotic pressure, and potential energy. Together these reveal the surprising result that collapse can occur with a fully intact network, where the tipping point arises when particle migration dissolves strands in a capillary-type instability. While it is possible for collapse to rupture a gel network into clusters that then sediment, and hydrodynamic interactions can make interesting contributions, neither is necessary. Rather, we find that the "delay" arises from gravity-enhanced coarsening, which triggers the re-emergence of phase separation. The mechanism of this transition is a leap toward lower potential energy of the gel, driven by bulk negative osmotic pressure that condenses the particle phase: the gel collapses in on itself under negative osmotic pressure allowing the gel, to tunnel through the equilibrium phase diagram to a higher volume fraction "state". Remarkably, collapse stops when condensation stops, when gravitational advection produces a positive osmotic pressure, re-arresting the gel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm00002f | DOI Listing |
J Vis Exp
December 2024
1State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry; Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry; Tianjin Institute of Forestry Science, Chinese Academy of Forestry;
Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146.
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.
View Article and Find Full Text PDFMechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.
View Article and Find Full Text PDFToxicol Rep
June 2025
Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India.
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China. Electronic address:
Current analgesics on the market exhibit a short duration of action and induce the production of inflammatory factors in tissues damaged by surgical procedures. Inflammatory factor production can create acidic environments, limiting drug delivery. In this study, we developed a novel injectable formulation comprising bupivacaine multivesicular liposomes of high osmotic pressure (H-MVL) and meloxicam nanocrystals (MLX) in a thermosensitive gel (H-MVL/MLX@GEL) adapted to the microenvironment for long-term postoperative analgesia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!