Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions. The dry conversion of ISOPOOH to HCHO was 3±2% and 6±4% for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. Under humid (RH= 40-60%) conditions, conversion to HCHO was 6±4% for (1,2)-ISOPOOH and 10±5% for (4,3)-ISOPOOH. The measurement artifact caused by conversion of ISOPOOH to HCHO in the ISAF instrument was estimated for data obtained on the 2013 September 6 flight of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEACRS) campaign. Prompt ISOPOOH conversion to HCHO was the source for <4% of the observed HCHO, including in the high-isoprene boundary layer. Time-delayed conversion, where previous exposure to ISOPOOH affects measured HCHO later in flight, was conservatively estimated to be < 10% of observed HCHO and is significant only when high ISOPOOH sampling periods immediately precede periods of low HCHO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889939 | PMC |
http://dx.doi.org/10.5194/amt-9-4561-2016 | DOI Listing |
PLoS One
January 2025
Department of Prehistory, Institute of Archaeology, Hebrew University of Jerusalem, Jerusalem, Israel.
The evolution of human behaviour is marked by key decision-making processes reflected in technological variability in the early archaeological record. As part of the technological system, differences in raw material quality directly affect the way that humans produce, design and use stone tools. The selection, procurement and use of various raw materials requires decision-making to evaluate multiple factors such as suitability to produce and design tools, but also the materials' efficiency and durability in performing a given task.
View Article and Find Full Text PDFMicroscopy (Oxf)
December 2024
Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.
View Article and Find Full Text PDFBackground: Magnetization transfer (MT) MRI is sensitive to the presence of macromolecules, including amyloid-beta, and previous work suggests that it may be useful for discriminating patients with Alzheimer's disease (AD) from healthy controls. In this study, we investigated if quantitative MT (qMT) is capable of detecting the amyloid concentration in a preclinical cohort.
Method: We recruited 14 subjects with a clinical dementia rating of 0 from NYU's ADRC cohort (7 male, mean age 74, 6 amyloid-negative).
Background: Quantitative EEG measures can be used as biosignatures of disease conditions. As such, the effect of interventions/treatments can be studied by longitudinal analysis of changes in these measures. The consistency of these measures can be assessed by test-retest reliability scores such as intra-class correlation coefficient (ICC) that depends on intra- and inter-subject variability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.
Background: Neuropathological studies indicate that locus coeruleus(LC) volume decreases in Alzheimer's disease(AD) by 8% at each stage, (from Braak 0-1), whereas in normal aging, the LC remains unchanged. These changes make LC volumetry by neuroimaging a promising way to track AD progression even before symptoms appear. However, LC's small size and location make it prone to imaging artifacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!