Increased sulphation improves the anticoagulant activities of heparan sulphate and dermatan sulphate.

Biochem J

Canadian Red Cross Society Blood Transfusion Service, Hamilton, Ont.

Published: December 1987

Heparan sulphate and dermatan sulphate have both antithrombotic and anticoagulant properties. These are, however, significantly weaker than those of a comparable amount of standard pig mucosal heparin. Antithrombotic and anticoagulant effects of glycosaminoglycans depend on their ability to catalyse the inhibition of thrombin and/or to inhibit the activation of prothrombin. Since heparan sulphate and dermatan sulphate are less sulphated than unfractionated heparin, we investigated whether the decreased sulphation contributes to the lower antithrombotic and anticoagulant activities compared with standard heparin. To do this, we compared the anticoagulant activities of heparan sulphate and dermatan sulphate with those of their derivatives resulphated in vitro. The ratio of sulphate to carboxylate in these resulphated heparan sulphate and dermatan sulphate derivatives was approximately twice that of the parent compounds and similar to that of standard heparin. Anticoagulant effects were assessed by determining (a) the catalytic effects of each glycosaminoglycan on the inhibition of thrombin added to plasma, and (b) the ability of each glycosaminoglycan to inhibit the activation of 125I-prothrombin in plasma. The least sulphated glycosaminoglycans were least able to catalyse the inhibition of thrombin added to plasma and to inhibit the activation of prothrombin. Furthermore, increasing the degree of sulphation improved the catalytic effects of glycosaminoglycans on the inhibition of thrombin by heparin cofactor II in plasma. The degree of sulphation therefore appears to be an important functional property that contributes significantly to the anticoagulant effects of the two glycosaminoglycans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148633PMC
http://dx.doi.org/10.1042/bj2480889DOI Listing

Publication Analysis

Top Keywords

heparan sulphate
20
sulphate dermatan
20
dermatan sulphate
20
inhibition thrombin
16
anticoagulant activities
12
antithrombotic anticoagulant
12
anticoagulant effects
12
effects glycosaminoglycans
12
inhibit activation
12
sulphate
11

Similar Publications

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.

View Article and Find Full Text PDF

Glycosylation Pathways Targeted by Deregulated miRNAs in Autism Spectrum Disorder.

Int J Mol Sci

January 2025

Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.

Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS).

View Article and Find Full Text PDF

Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study aim was to investigate the effects of shift work, SJL, and chronotype on endothelial function and coagulation parameters.

View Article and Find Full Text PDF

Background/objectives: Heparan sulfate (HS) is a polysaccharide that is found on the surface of cells and has various biological functions in the body.

Methods: The purpose of this study was to predict the pharmacological effects and molecular mechanisms of HS on Alzheimer's disease (AD) and neuroinflammation (NI) through a network pharmacology analysis and to experimentally verify them.

Results: We performed functional enrichment analysis of common genes between HS target genes and AD-NI gene sets and obtained items such as the "Cytokine-Mediated Signaling Pathway", "Positive Regulation Of MAPK Cascade", and "MAPK signaling pathway".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!