Glucocorticoid-induced osteoporosis (GIOP) is a serious clinical bone disease that results from the long-term consumption of glucocorticoids or glucocorticoid-like drugs. Although many studies have attempted to determine the mechanisms of GIOP, they are still unclear. In this study, we established a zebrafish model of glucocorticoid-like drug-induced osteoporosis by treating larvae with prednisolone. We then quantified the expression of a selection of extracellular matrix (ECM)-, osteoblast-, and osteoclast-related genes. Our results showed that at 15 days post fertilization, zebrafish larvae treated with 25 μM prednisolone are a suitable model for GIOP, not only owing to the decrease in robust bone mass but also because of significant alterations in gene expression. The quantification of the expression of ECM-, osteoblast-, and osteoclast- related genes revealed that mmp9 and mmp13 were significantly upregulated and entpd5a, acp5a, and sost were significantly downregulated. These genes may be a target for future research into GIOP. Our study thus provides new insights into GIOP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.02.082DOI Listing

Publication Analysis

Top Keywords

ecm- osteoblast-
8
giop
5
mechanisms prednisolone-induced
4
prednisolone-induced osteoporosis
4
osteoporosis zebrafish
4
zebrafish larva
4
larva glucocorticoid-induced
4
glucocorticoid-induced osteoporosis
4
osteoporosis giop
4
giop serious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!