Background: Lentil, a cool-season food legume, is highly sensitive to high temperatures, which drastically reduce biomass and seed yield. The effects of heat stress on qualitative and quantitative aspects of seeds are not yet known.

Results: In this study, we assessed the effects of high temperatures on quantitative and qualitative aspects of seeds in a heat-tolerant (HT; FLIP2009) and heat-sensitive (HS; IG4242) genotypes in a controlled environment. Initially, the plants were raised in a natural, outdoor environment (22/10 °C mean day/night temperature, 1350 µmol m s light intensity, 60-65% relative humidity) from November to mid-February until 50% flowering (114-115 days after sowing). After that, one set of plants was maintained in a controlled environment (28/23 °C, as mean day and night temperature, 500 µmol m s light intensity, 60-65% relative humidity;control) and one set was exposed to heat stress (33/28 °C, as mean day and night temperature, 500 µmol m s light intensity, 60-65% relative humidity), where they remained until maturity. Compared to control, heat stress reduced the seed growth rate by 30-44% and the seed-filling duration by 5.5-8.1 days, which ultimately reduced the seed yield by 38-58% and individual seed weights by 20-39%. Heat stress significantly damaged cell membranes and reduced chlorophyll concentration and fluorescence, and the photosynthetic rate, which was associated with a significant reduction in relative leaf water content. The proximate analysis of seed reserves showed that heat stress reduced starch (25-43%), protein (26-41%) and fat (39-57%) content, and increased total sugars (36-68%), relative to the controls. Heat stress also inhibited the accumulation of storage proteins including albumins, globulins, prolamins and glutelins (22-42%). Most of the amino acids decreased significantly under heat stress in comparison to control, whereas some, such as proline, followed by glycine, alanine, isoleucine, leucine and lysine, increased. Heat stress reduced Ca (13-28%), Fe (17-52%), P (10-54%), K (12.4-28.3%) and Zn (36-59%) content in seeds, compared to the controls.

Conclusions: High temperatures during seed filling are detrimental for seed yield and quality components in lentil genotypes, with severe impacts on heat-sensitive genotypes. © 2018 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.9054DOI Listing

Publication Analysis

Top Keywords

heat stress
36
seed yield
16
high temperatures
12
µmol light
12
light intensity
12
intensity 60-65%
12
60-65% relative
12
stress reduced
12
seed
10
stress
9

Similar Publications

Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.

View Article and Find Full Text PDF

This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.

View Article and Find Full Text PDF

Biomarkers and Social Determinants in atherosclerotic Arterial Diseases: A Scoping Review.

Ann Vasc Surg

January 2025

Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy; Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy. Electronic address:

Background: Arterial diseases like coronary artery disease, carotid stenosis, peripheral artery disease, and abdominal aortic aneurysm have high morbidity and mortality, making them key research areas. Their multifactorial nature complicates patient treatment and prevention. Biomarkers offer insights into the biochemical and molecular processes, while social factors also significantly impact patients' health and quality of life.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Climate change is making extreme heat events more frequent and intense. This negatively impacts many aspects of society, including organised sport. As the world's most watched sporting event, the FIFA World Cup commands particular attention around the threat of extreme heat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!