The occurrence of 93 pharmaceuticals, illicit drugs and their metabolites has been investigated in stabilized sewage sludge from five municipal wastewater treatment plants (WWTPs) in the Slovak Republic. The total population connected to the tested WWTPs was approximately 600,000 p.e. which represents >20% of the Slovak population connected to public sewer systems. The sludge production from the five tested plants was >8100tons in 2016, which is approximately 15% of the total Slovak sewage sludge production in 2016. The highest total concentration of all pharmaceuticals was found in WWTP Bratislava Devínska Nová Ves (DNV) and Senec - 11,800 and 11,300ng/g dry matter (DM), respectively. Among individual pharmaceuticals, the highest concentrations were recorded for fexofenadine (mean 2340ng/g DM, maximum 5600ng/g DM in Bratislava DNV) and telmisartan (mean 1170ng/g DM, with a maximum of 3370ng/g DM in Senec). A principal component analysis revealed differences between pharmaceutical patterns in aerobically and anaerobically stabilized sludge. The worst-case scenario based on no further degradation of pharmaceuticals between sludge production and field application was used to predict pharmaceutical mass loads in agriculture. For the result, we estimated an annual load to soil in the Slovak Republic of up to several hundred kilograms of pharmaceuticals and drugs, with the maximum for fexofenadine (120kg/year) and verapamil (29kg/year).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.04.001 | DOI Listing |
Bioresour Technol
January 2025
College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China. Electronic address:
Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22%, and 17%, respectively.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA. Electronic address:
Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective.
View Article and Find Full Text PDFPoult Sci
January 2025
Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. Electronic address:
Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, 310021, China.
Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!