Background: Sepsis is commonly associated with excessive stimulation of host immune system and result in multi-organ failure dysfunction. Naringin has been reported to exhibit a variety of biological effects. The present study aimed to investigate the protective effect of naringin on sepsis-induced injury of intestinal barrier function in vivo and in vitro.
Methods: Mice were randomly divided into 4 groups named sham (n = 20), CLP + vehicle (n = 20), CLP + NG (30 mg/kg) (n = 20) and CLP + NG (60 mg/kg) (n = 20) groups. Sepsis was induced by cecal ligation and puncture (CLP). H&E staining and transmission electron microscopy (TEM) were performed to observe intestinal mucosal morphology. ELISA was used to determine the intestinal permeability and inflammatory response in vivo and in vitro. Western blot and RhoA activity assay were performed to determine the levels of tight junction proteins and the activation of indicated signaling pathways. MTT assay was used to determine cell viability.
Results: Naringin improved survival rate of CLP mice and alleviated sepsis-induced intestinal mucosal injury. Furthermore, naringin improved impaired intestinal permeability and inhibited the release of TNF-α and IL-6, while increased IL-10 level in CLP mice and lipopolysaccharide (LPS)-stimulated MODE-K cells in a dose-dependent manner. Naringin increased the expression of tight junction proteins ZO-1 and claudin-1 via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro.
Conclusion: Naringin improved sepsis-induced intestinal injury via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.03.163 | DOI Listing |
Mol Med Rep
February 2025
Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.
The present study investigated the impact of boric acid (BA) and borax (BX) on markers of inflammation and modifications in miR‑21/PTEN/AKT pathway genes in the liver and kidney tissues of Sprague Dawley male rats with sepsis induced by cecal ligation and puncture (CLP). A total of 60 male Sprague Dawley rats were randomly divided into 6 groups, each containing 10 animals as follows: Control, CLP (where the model was created), 20 mg/kg BX (CLP + BX1), 40 mg/kg BX (CLP + BX2), 20 mg/kg BA (CLP + BA1) and 40 mg/kg BA (CLP + BA2). Liver and kidney tissues were analyzed for histopathological changes, immunopositivity for tumor necrosis factor‑α, interleukin (IL)‑6 and IL‑10, and gene expression of microRNA‑21 (miR‑21), phosphatase and tensin homolog (PTEN) and AKT.
View Article and Find Full Text PDFImmunobiology
November 2024
The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming 650500, China. Electronic address:
Sepsis-induced myocardial injury has become a major threat to patient health and safety. Intestinal microbiota imbalance plays a crucial role in sepsis regulation. Using 16srRNA technology, we explored how intestinal colonization of Clostridium butyricum over 28 days impacted mice with LPS-induced sepsis.
View Article and Find Full Text PDFShock
December 2024
Department of Surgery and Emory Critical Care Center, Emory University, School of Medicine, Atlanta, Georgia, USA.
J Chin Med Assoc
December 2024
Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC.
Background: Sepsis is a systemic inflammatory state associated with acute kidney injury (AKI) and high mortality. However, sepsis-induced AKI cannot be effectively prevented or treated using current antimicrobial therapies and supportive measures. We explored the therapeutic effect of newly developed fructose esters on sepsis-induced AKI (S-AKI).
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India. Electronic address:
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!