A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of enantiomeric excess of some amino acids by second-order calibration of kinetic-fluorescence data. | LitMetric

In this investigation a new non-separative kinetic-spectroflourimetric method is proposed for the determination of lysine (lys), leucine (leu) and phenylalanine (phe) enantiomers as their o-phthaldialdehyde (OPA) derivatives in the presence of an optically active chiral thiol compound, 1-mercapto-2-propanol (MP). At ambient temperature and in the borate buffer media of pH 9.6, MP, OPA, as highly selective fluorogenic reagents, and amino acid (AA) enantiomers reacts with each other to yield two fluorescent diasteriomers of D and L-AA with maximum difference in fluorescence intensity at about 450 nm. To achieve information from the small spectral changes, the data are analyzed by Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) method. Linear calibration curves are achieved to distinct D and L-lys, leu and phe in different mole ratios by applying appropriate constraints in MCR-ALS procedures. This is the first application of MCR-ALS in determination of enantiomeric excess (ee) using OPA/MP adduct as chiral reagent, which benefits from direct time dependent-fluorescence spectral analysis and does not require prior separation of chiral analytes. Both the cross-validated correlation coefficient (Q) and root mean squares error of prediction (RMSEP) indicated satisfactory prediction ability of this method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2018.04.004DOI Listing

Publication Analysis

Top Keywords

determination enantiomeric
8
enantiomeric excess
8
excess amino
4
amino acids
4
acids second-order
4
second-order calibration
4
calibration kinetic-fluorescence
4
kinetic-fluorescence data
4
data investigation
4
investigation non-separative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!