As shown by a quite significant amount of literature, acids at the water surface tend to be "less" acid, meaning that their associated form is favored over the conjugated base. What happens at the solid/liquid interface? In the case of the silica/water interface, we show how the acidity of adsorbed molecules can instead increase. Using a free energy perturbation approach in combination with electronic structure-based molecular dynamics simulations, we show how the acidity of pyruvic acid at the quartz/water interface is increased by almost two units. Such increased acidity is the result of the specific microsolvation at the interface and, in particular, of the stabilization of the deprotonated form by the silanols on the quartz surface and the special interfacial water layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b00686 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!