Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A combination of processes was required for the proper treatment of old landfill leachate, as it contained a high concentration of pollutants. Humic substances comprised half of the total organic carbon in the raw leachate. Mobility of di(2-ethylhexyl) phthalate (DEHP) and metals could depend on the fate of these substances. Characterization of carbon in raw leachate and effluent of the membrane bioreactor, biofiltration, electro-oxidation, electro-coagulation, and nanofiltration showed complete removal of suspended solids and colloids. Physical processes could not remove the hydrophilic fraction due to its lower molecular weight. However, high removal of the hydrophilic fraction with a molecular weight <500 Da was expected in the biological process. In comparison with fulvic acid, larger sized humic acid resulted in complete removal by physicochemical processes. Because of DEHP partitioning on dissolved organic matter, especially on humic substances, its removal could be correlated with total organic carbon removal. Metals such as iron, aluminum, magnesium, and lead showed removal efficiency >80% in biological processes. Electro-deposition on the surface of an electrode and precipitation by hydroxide resulted in removal efficiencies >90 and >50% in electro-coagulation and electro-oxidation, respectively. Rejection of metals by nanofiltration was >80% and depended on the size and charge of cation. All in all, a combination of membrane bioreactor and nanofiltration seems to be the optimal process configuration for efficient treatment of old landfill leachate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2017.09.0360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!