The present study aimed to investigate the relationship between placental pathological findings and physiological development during the neonate and infantile periods. Study participants were 258 infants from singleton pregnancies enrolled in the Hamamatsu Birth Cohort for Mothers and Children (HBC Study) whose placentas were stored in our pathological division. They were followed up from birth to 18 months of age. Physiological development (body weight and the ponderal index [PI]) was assessed at 0, 1, 4, 6, 10, 14, and 18 months. Placental blocks were prepared by random sampling and eleven pathological findings were assessed, as follows: 'Accelerated villous maturation', 'Decidual vasculopathy', 'Thrombosis or Intramural fibrin deposition', 'Avascular villi', 'Delayed villous maturation', 'Maternal inflammatory response', 'Fetal inflammatory response', 'Villitis of unknown etiology (VUE)', 'Deciduitis', 'Maternal vascular malperfusion', and 'Fetal vascular malperfusion'. Mixed model analysis with the use of the xtmixed command by the generic statistical software, Stata version 13.1., identified 'Accelerated villous maturation' and 'Maternal vascular malperfusion' as significant predictors of a lower body weight and 'Deciduitis' as a significant predictor of a small PI, throughout the first 18 months of life. In conclusion, the present study is the first to demonstrate that some pathological findings of the placenta are associated with changes in infantile physical development during the initial 18 months of life in the Japanese population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892873 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194988 | PLOS |
Metastasis stands as one of the most prominent prognostic factors in osteosarcoma. Over 70% of metastatic osteosarcoma occurrences affect the lung. Nonetheless, to date, there has been a scarcity of research addressing predictive factors for lung metastasis risk in osteosarcoma.
View Article and Find Full Text PDFAtypical lipomatous tumors/well-differentiated liposarcomas (ALT/WDLPS) are low-grade, slow-growing, and locally aggressive tumors. We investigated clinical outcomes and recurrence factors for ALT/WDLPS of the extremities. This is retrospective study across three institutions which included patients who underwent surgery for ALT/WDLPS from 2001 to 2019.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States of America.
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!